按文献类别分组
按栏目分组
关键词
多特征融合的高分辨率遥感影像飞机目标变化检测
作者: 徐俊峰   张保明   余东行   林雨准   郭海涛   来源: 遥感学报 年份: 2020 文献类型 : 期刊 关键词: 高分辨率遥感影像   卷积神经网络   多特征融合   变化检测   飞机目标   遥感   多元变化检测  
描述:卷积神经网络飞机识别模型,完成变化图斑的类型判别,实现变化飞机的检测。实验结果表明,本文方法在两组数据的正确率分别达到100%和91.89%,均优于对比方法,能实现准确可靠的飞机目标变化检测。
一种基于级联神经网络的飞机检测方法
作者: 王晓林   苏松志   刘晓颖   蔡国榕   李绍滋   来源: 智能系统学报 年份: 2021 文献类型 : 期刊 关键词: 嵌入式设备   遥感图像   级联   卷积神经网络   两阶段   深度学习   飞机检测   由粗到细  
描述: 到遥感图像中。这些算法的主干网络复杂,模型占用空间大,难以应用到低功耗和嵌入式设备中。为了在准确率不降低的情况下提高检测速度,本文提出了一个仅包含9层的卷积神经网络来解决飞机检测问题。该网络采用
一种基于级联神经网络的飞机检测方法
作者: 王晓林   苏松志   刘晓颖   蔡国榕   李绍滋   来源: 智能系统学报 年份: 2021 文献类型 : 期刊 关键词: 嵌入式设备   遥感图像   级联   卷积神经网络   两阶段   深度学习   飞机检测   由粗到细  
描述: 到遥感图像中。这些算法的主干网络复杂,模型占用空间大,难以应用到低功耗和嵌入式设备中。为了在准确率不降低的情况下提高检测速度,本文提出了一个仅包含9层的卷积神经网络来解决飞机检测问题。该网络采用
改进YOLO V3遥感图像飞机识别应用
作者: 郑志强   刘妍妍   潘长城   李国宁   来源: 电光与控制 年份: 2019 文献类型 : 期刊 关键词: YOLO   Densenet   遥感图像   means   卷积神经网络   飞机识别   k   V3  
描述: ,改进为一种Dense-YOLO深度卷积神经网络结构。对改进前与改进后的网络进行训练,分别选出使两个网络识别效果最好的权重文件,针对高质量遥感图像与过度曝光、云雾遮挡等低质量遥感图像分别进行测试与分析
改进YOLO V3遥感图像飞机识别应用
作者: 郑志强   刘妍妍   潘长城   李国宁   来源: 电光与控制 年份: 2019 文献类型 : 期刊 关键词: YOLO   Densenet   遥感图像   means   卷积神经网络   飞机识别   k   V3  
描述: ,改进为一种Dense-YOLO深度卷积神经网络结构。对改进前与改进后的网络进行训练,分别选出使两个网络识别效果最好的权重文件,针对高质量遥感图像与过度曝光、云雾遮挡等低质量遥感图像分别进行测试与分析
基于神经网络的航空行李点云检测方法研究
作者: 翁博文   胡丹丹   罗其俊   来源: 电子世界 年份: 2020 文献类型 : 期刊 关键词: 随机梯度下降法   测试数据集   点云特征   卷积神经网络   点云数据   云检测   三层感知机   全局特征   多层感知机  
描述: 针对航空旅客托运行李相似度高、几何特征强、材质复杂等特点,提出一种基于多层神经网络的航空行李点云检测方法。该方采用MLP结构对点云的全局特征进行描述,并针对点云的几何特征引入X-Conv卷积以增强对边缘点云的几何描述,增强网络对空洞点云的识别能力。通过在某机场现场采集的行李点云数据集验证了该方法的准
基于神经网络的航空行李点云检测方法研究
作者: 翁博文   胡丹丹   罗其俊   来源: 电子世界 年份: 2020 文献类型 : 期刊 关键词: 随机梯度下降法   测试数据集   点云特征   卷积神经网络   点云数据   云检测   三层感知机   全局特征   多层感知机  
描述: 针对航空旅客托运行李相似度高、几何特征强、材质复杂等特点,提出一种基于多层神经网络的航空行李点云检测方法。该方采用MLP结构对点云的全局特征进行描述,并针对点云的几何特征引入X-Conv卷积以增强对边缘点云的几何描述,增强网络对空洞点云的识别能力。通过在某机场现场采集的行李点云数据集验证了该方法的准
基于统一网络架构的多模态航空影像质量评价研究
作者: 闫婧   武林伟   刘伟杰   韩如雪   来源: 现代电子技术 年份: 2023 文献类型 : 期刊 关键词: 无参考模型   特征提取   卷积神经网络   特征融合   多模态数据   深度学习   网络结构   影像质量评价  
描述: 高质量无人机航空影像是目标检测、分析、识别的重要前提条件,但各类传感器成像机理不同,质量影响因素多样,往往需要根据不同模态数据的特性设计不同的网络模型,从而大大增加了质量评价算法在无人机上的应用难度。针对这一问题,提出一种基于统一网络框架的无参考多模态影像质量评价模型,通过自适应地学习图像块内部的局部特征与图像块之间的相互关系,完成空间维度上的全局信息融合和时间维度上的时序信息融合,实现对多种模态影像数据的质量评估,进而快速有效地监测筛选采集数据的质量,提高有效数据采集效率。实验结果表明,该方法在多种模态的影像数据质量评价上具备泛用性和有效性。
基于统一网络架构的多模态航空影像质量评价研究
作者: 闫婧   武林伟   刘伟杰   韩如雪   来源: 现代电子技术 年份: 2023 文献类型 : 期刊 关键词: 无参考模型   特征提取   卷积神经网络   特征融合   多模态数据   深度学习   网络结构   影像质量评价  
描述: 高质量无人机航空影像是目标检测、分析、识别的重要前提条件,但各类传感器成像机理不同,质量影响因素多样,往往需要根据不同模态数据的特性设计不同的网络模型,从而大大增加了质量评价算法在无人机上的应用难度。针对这一问题,提出一种基于统一网络框架的无参考多模态影像质量评价模型,通过自适应地学习图像块内部的局部特征与图像块之间的相互关系,完成空间维度上的全局信息融合和时间维度上的时序信息融合,实现对多种模态影像数据的质量评估,进而快速有效地监测筛选采集数据的质量,提高有效数据采集效率。实验结果表明,该方法在多种模态的影像数据质量评价上具备泛用性和有效性。
< 1 2 3 ... 15 16
Rss订阅