首页>
根据【检索词:LS 】搜索到相关结果 15 条
基于Bi-LSTM的航空发动机寿命预测
作者:
万晓凡
徐泽宇
张营
来源:
农业装备与车辆工程
年份:
2022
文献类型 :
期刊
关键词:
航空发动机
寿命预测
优化
过拟合
神经网络
描述:
针对哪种类型神经网络对航空发动机剩余寿命预测结果更为准确的问题,采用对不同神经网络预测结果比较的方法,通过搭建双向长短时记忆网络预测模型的实验,对网络结构进行过拟合优化和对数据进行预处理后代入模型进行计算,再对长短时记忆网络的结果进行比对。结果表明,双向长短时记忆网络预测效果要比长短时记忆网络有更好的预测能力。
基于LSTM的航空发动机电气附件性能预测
作者:
罗贤峰
何宇
刘仲富
余振源
窦宇骁
孙兆荣
来源:
科技创新与应用
年份:
2022
文献类型 :
期刊
关键词:
静态测试
长短期记忆神经网络
性能预测
发动机电气附件
描述:
电气附件是航空发动机重要组成部分,包括电磁活门、作动器、传感器等,其结构复杂,种类庞多,还因振动、疲劳、应力等原因性能衰减,导致信号错误或控制失灵,严重时造成发动机空中停车,直接影响到飞机飞行安全。对此设计开发一套发动机电气附件性能预测系统,通过长短期记忆神经网络(Long Short-Term Memory Network,LSTM)构建基于数据驱动的电气附件静态性能预测模型,通过机器的训练与学习,预测分析电气附件的性能衰减状况,为发动机的维修提供有力的技术支持。
基于LSTM分类器的航空发动机预测性维护模型
作者:
蔺瑞管
王华伟
车畅畅
倪晓梅
熊明兰
来源:
系统工程与电子技术
年份:
2022
文献类型 :
期刊
关键词:
二分类
长短期记忆网络
时间窗
故障预测与健康管理
预测性维护
描述:
利用传感器数据进行预测性维护是航空发动机故障预测与健康管理(prognostic and health management, PHM)的关键问题。针对发动机剩余寿命预测准确性低的问题,提出基于长短期记忆网络(long short-term memory network, LSTM)分类器的预测性维护模型。LSTM分类器通过门控单元对长时间序列信息进行充分筛选,并将有效信息用于时间序列预测。首先,采用滑动时间窗口制备训练样本。其次,将预处理后的样本输入LSTM,预测设备在特定时间窗口内的失效概率。然后,通过调整窗口大小,得到最优性能的二分类模型,以更好地适应预测维护需求。最后,利用美国航空航天局C-MAPSS数据集验证了该模型的有效性,相比于已有分类方法,其在剩余使用寿命分类方面更加准确。
基于改进LSTM模型的航空安全预测方法研究
作者:
曾航
张红梅
任博
崔利杰
武江南
来源:
系统工程与电子技术
年份:
2022
文献类型 :
期刊
关键词:
堆叠式
长短期记忆
多步预测
神经网络
航空安全
描述:
精确的航空安全预测是科学开展安全预警的前提。航空事故不仅致因机理复杂,还存在迟滞效应,给安全样本时序信息的深度挖掘加大了难度。基于此,提出一种基于改进长短期记忆(long short-term memory, LSTM)模型的航空安全预测新方法。首先基于相关系数热图优选致因指标,再以步进搜索和Adam算法相结合的方式优化LSTM模型超参数,最后以2019年某型运输机事故数据为算例,选取多种常用时序预测模型作为对照。实验结果表明本文所提方法,预测误差较现有方法降低了28%以上,同时具有较好的泛化能力和鲁棒性。
基于注意力与LSTM的航空发动机剩余寿命预测
作者:
王欣
孟天宇
周俊曦
来源:
科学技术与工程
年份:
2022
文献类型 :
期刊
关键词:
注意力机制
长短期记忆网络
航空发动机
剩余寿命预测
预测性维护
描述:
预测性维护的核心技术之一是设备剩余寿命(remaining useful life, RUL)预测。为了提高航空发动机的剩余寿命预测精度,提出了一种基于注意力与长短期记忆(directional long short-term memory, LSTM)网络的航空发动机剩余寿命预测模型Attention-LSTM,通过引入注意力机制增强各时间点数据的特征权重,有效提升了模型预测精度。使用NASA C-MAPSS涡扇发动机仿真数据集进行实验,与未加注意力机制的长短期记忆网络等多种模型进行对比实验。实验结果表明,提到的Attention-LSTM模型的均方根误差相比较于未引入注意力机制的长短期记忆网络降低了17.8%,拟合度提升了3.2%,各项评估指标均也优于其他对比模型。
基于LSTM分类器的航空发动机预测性维护模型
作者:
蔺瑞管
王华伟
车畅畅
倪晓梅
熊明兰
来源:
系统工程与电子技术
年份:
2022
文献类型 :
期刊
关键词:
二分类
长短期记忆网络
时间窗
故障预测与健康管理
预测性维护
描述:
利用传感器数据进行预测性维护是航空发动机故障预测与健康管理(prognostic and health management, PHM)的关键问题。针对发动机剩余寿命预测准确性低的问题,提出基于长短期记忆网络(long short-term memory network, LSTM)分类器的预测性维护模型。LSTM分类器通过门控单元对长时间序列信息进行充分筛选,并将有效信息用于时间序列预测。首先,采用滑动时间窗口制备训练样本。其次,将预处理后的样本输入LSTM,预测设备在特定时间窗口内的失效概率。然后,通过调整窗口大小,得到最优性能的二分类模型,以更好地适应预测维护需求。最后,利用美国航空航天局C-MAPSS数据集验证了该模型的有效性,相比于已有分类方法,其在剩余使用寿命分类方面更加准确。
基于改进LSTM模型的航空安全预测方法研究
作者:
曾航
张红梅
任博
崔利杰
武江南
来源:
系统工程与电子技术
年份:
2022
文献类型 :
期刊
关键词:
堆叠式
长短期记忆
多步预测
神经网络
航空安全
描述:
精确的航空安全预测是科学开展安全预警的前提。航空事故不仅致因机理复杂,还存在迟滞效应,给安全样本时序信息的深度挖掘加大了难度。基于此,提出一种基于改进长短期记忆(long short-term memory, LSTM)模型的航空安全预测新方法。首先基于相关系数热图优选致因指标,再以步进搜索和Adam算法相结合的方式优化LSTM模型超参数,最后以2019年某型运输机事故数据为算例,选取多种常用时序预测模型作为对照。实验结果表明本文所提方法,预测误差较现有方法降低了28%以上,同时具有较好的泛化能力和鲁棒性。
基于卷积LSTM模型的航空器轨迹预测
作者:
刘龙庚
翟俐民
韩云祥
来源:
计算机工程与设计
年份:
2022
文献类型 :
期刊
关键词:
长短期记忆网络
时间序列
空管大数据
航迹聚类
深度学习
智能交通
航迹预测
描述:
采集空管大数据,根据空管大数据的特点,对数据进行数据融合,利用改进的聚类算法处理航迹数据,对得到的各类航迹数据分别构建模型,提高模型的预测精度。分别构建Stack LSTM和基于卷积LSTM的航空器轨迹预测模型,以真实雷达数据为例进行仿真实验,对仿真结果进行对比,其结果表明,基于卷积LSTM的航空器轨迹预测模型可以将预测的均方根误差控制在400s内,验证了预测模型可以实现航空器轨迹的精确预测。
基于改进LSTM的航空发动机寿命预测方法研究
作者:
郭晓静
殷宇萱
贠玉晶
来源:
机床与液压
年份:
2022
文献类型 :
期刊
关键词:
长短期记忆网络
航空发动机
自动编码器
剩余寿命预测
描述:
发动机剩余寿命(RUL)预测时,进行数据特征提取易导致预测效率低下。为解决此问题,提出一种改进的长短期记忆(LSTM)算法模型。通过引入深度稀疏自动编码器(SDAE)完成时序数据的处理与特征提取,优化LSTM模型,改善航空发动机RUL预测效果。利用SDAE进行特征提取,构建健康因子(HI)曲线;同时考虑运行工况、故障模式和传感器3个因素,并分别训练其权重。利用LSTM模型进行发动机剩余寿命预测。利用涡扇发动机退化过程数据集C-MAPSS开展实验,并与DNN、BiLSTM、单层LSTM进行对比分析。结果表明:与上述3种算法相比,改进后算法的均方根误差和评分函数值至少分别降低6.6%和39.1%;该方法寿命预测结果和实际寿命曲线拟合度高,验证了该方法的可行性和有效性。
基于KPCA-BLSTM的航空发动机多信息融合剩余寿命预测
作者:
胡启国
白熊
杜春超
来源:
航空工程进展
年份:
2022
文献类型 :
期刊
关键词:
航空发动机
剩余寿命
多信息融合
核主成分分析
双向长短时记忆
描述:
复杂航空发动机在运行过程中易出现多退化信息而导致寿命预测不精确的问题,为此提出基于核主成分分析(KPCA)和双向长短时记忆(BLSTM)神经网络的多信息融合寿命预测模型。首先采用KPCA对多维退化数据集进行降维处理和信息融合,得到能够表征设备退化的低维特征数据集;然后利用BLSTM神经网络对带有多维退化信息的航空发动机剩余寿命进行预测,得到监测数据与剩余寿命的映射关系;最后采用CMAPSS航空发动机退化数据集对提出的多信息融合寿命预测模型进行仿真验证,并与其他三种模型结果进行对比。结果表明:KPCA-BLSTM神经网络能够对多维退化信息下的剩余寿命进行精准预测,本文提出的预测模型的误差与得分优于其他三种模型,而且预测精度更高。