关键词
基于关键点检测的航空发动机螺栓安装缺陷自动化检测方法
作者: 辛佳雯   王睿   谢艳霞   孙军华   来源: 仪器仪表学报 年份: 2023 文献类型 : 期刊 关键词: 关键点检测   深度学习   双目立体视觉   缺陷检测  
描述: 针对航空发动机螺栓存在背景复杂、目标小、且精细特征不明显的问题,本文研究了一种基于关键点检测的航空发动机螺栓安装缺陷的自动化检测方法。首先设计了基于Faster RCNN和改进CPN(attention deformable convolution-cascaded pyramid network, AD-CPN)的级联卷积神经网络,实现了图像中螺栓及二维关键点的检测,可判断该螺栓是否脱落、漏装。为进一步检测螺栓的三维安装缺陷,通过欧式距离选择策略对已检测出的关键点进行双目匹配、筛选以获得检测点对,最后对检测点对三维重构,并计算出螺栓的实际长度,从而判断螺栓是否错装。实验结果表明,相较于CPN,AD-CPN的mAP、AP50、AP75分别提升了2.9%、3.3%、4%;螺栓测量长度的相对平均误差约为3.0%,可见该方法具有较高的缺陷检测准确率,有效保障了航空发动机的安全运行。
基于深度学习的陆空通话复诵校验方法研究
作者: 李丹   来源: 中国民航大学 年份: 2019 文献类型 : 学位论文 关键词: 注意力机制   陆空通话复诵校验   深度学习   双向长短时记忆神经网络  
描述: 基于深度学习的陆空通话复诵校验方法研究
基于深度学习的飞机乘员应急撤离行为特征分类研究
作者: 纪乾   来源: 中国民航大学 年份: 2019 文献类型 : 学位论文 关键词: 深度学习   应急撤离   行为特征   仿真模型  
描述: 基于深度学习的飞机乘员应急撤离行为特征分类研究
基于深度强化学习的三维超声标准面自动定位
作者: 窦浩然   来源: 深圳大学 年份: 2020 文献类型 : 学位论文 关键词: 循环神经网络   深度强化学习   深度学习   胎儿标准面定位  
描述: 基于深度强化学习的三维超声标准面自动定位
基于深度学习的航空发动机性能预测
作者: 王福洋   来源: 大连理工大学 年份: 2020 文献类型 : 学位论文 关键词: 性能预测   航空发动机   剩余寿命   深度学习  
描述: 基于深度学习的航空发动机性能预测
基于深度学习的直升机航空大地电磁数据反演研究
作者: 曹飞翔   来源: 河南理工大学 年份: 2020 文献类型 : 学位论文 关键词: 卷积神经网络   直升机航空大地电磁   深度学习   倾子  
描述: 基于深度学习的直升机航空大地电磁数据反演研究
基于深度学习的航空器场面轨迹预测
作者: 李雪   何元清   胡耀   来源: 现代计算机 年份: 2022 文献类型 : 期刊 关键词: 长短期记忆网络   深度学习   轨迹预测  
描述: 轨迹预测研究是安全高效控制场面滑行的重要基础,在路由规划,风险预警,航班次序,重要节点的时间安排等都能起到重要作用。利用深度学习中循环神经网络的长期记忆性特点,对航空器场面历史数据进行分析和预处理,设定网络模型参数,构建轨迹预测模型,提出了一种基于深度学习的航空器场面滑行轨迹预测方法。结合场面航空器运动状态的变化,改进长短期记忆网络的隐藏层结构,实现对航空器场面轨迹的中期预测。
通用航空训练飞行发动机数据异常检测初探
作者: 王翔   来源: 内燃机与配件 年份: 2022 文献类型 : 期刊 关键词: 深度学习   训练飞行   异常检测  
描述: 大型运输机发动机的健康管理研究较为广泛,相对于运输航空,针对通用航空领域以训练飞行为主的小型教练机发动机的异常检测技术还不够成熟。训练飞行具有飞行模式固定,起降频次较高,信息数据结构简单的特点,更适合引入深度学习对其进行建模分析。本文归纳了当前主流的几种深度异常检测模型,从原理、计算复杂度和优缺点三个角度进行分析。为通用航空训练飞行的教练机发动机的异常检测研究提供可行的研究思路。
多头注意力驱动的航空高速轴承故障诊断方法
作者: 王兴   张晗   朱家正   林建波   杜朝辉   来源: 振动与冲击 年份: 2023 文献类型 : 期刊 关键词: 多头注意力   航空轴承   故障诊断   深度学习  
描述: 航空发动机运行速度高、工况变化大、结构复杂且干扰噪声大,导致微弱故障特征往往存在于多子空间中,目前基于数据驱动的诊断模型尚不足以可靠捕捉不同子空间中丰富的特征信息。针对上述问题,提出一种基于信号特征的多头注意力诊断方法(multi-head attention diagnosis method, MADM),可实现高速非平稳工况下航空轴承故障状态的识别和诊断。该方法首先通过卷积模块和双向GRU模块对原始振动信号进行特征提取;然后引入多头注意力模块,使网络同时注意并融合不同表示子空间的信息以提高故障特征的显著性水平;最后利用全连接模块和Softmax分类器对提取的特征进行高速轴承故障诊断。试验结果表明,提出的MADM该诊断方法可实现转速为12 000 r/min以上、剥落面积最小为0.5 mm~2的航空轴承高精度可靠诊断,且优于目前主流的深度诊断方法。
基于全卷积神经网络的航空遥感图像语义分割及改进方法研究
作者: 彭鹄   来源: 哈尔滨工业大学 年份: 2020 文献类型 : 学位论文 关键词: 语义分割   卷积神经网络   深度学习   航空遥感图像  
描述: 基于全卷积神经网络的航空遥感图像语义分割及改进方法研究
< 1 2 3 ... 8 9 10 ... 22 23 24
Rss订阅