首页>
根据【关键词:高分辨率遥感影像,卷积神经网络,多特征融合,变化检测,飞机目标,遥感,多元变化检测】搜索到相关结果 28 条
-
基于深度学习的遥感影像飞机检测方法研究
-
作者:
谢奇芳
来源:
中国地质大学(北京)
年份:
2019
文献类型 :
学位论文
关键词:
高分辨率遥感影像
卷积神经网络
深度学习
目标检测
-
描述:
基于深度学习的遥感影像飞机检测方法研究
-
遥感图像飞机目标检测方法研究
-
作者:
张晨露
来源:
中国科学院大学(中国科学院西安光学精密机械研究所)
年份:
2019
文献类型 :
学位论文
关键词:
遥感图像
感受野
卷积神经网络
目标检测
飞机目标
-
描述:
遥感图像飞机目标检测方法研究
-
结合显著图和深度学习的遥感影像飞机目标识别
-
作者:
刘相云
龚志辉
金飞
杨光
范炜康
来源:
测绘通报
年份:
2019
文献类型 :
期刊
关键词:
遥感影像
显著图
多特征融合
飞机目标识别
深度置信网络
-
描述:
为准确快速识别高分辨率遥感影像中的飞机目标,提出了一种结合显著图和深度置信网络(DBN)的飞机目标识别算法。本文首先使用HC(直方图对比度)算法提取遥感影像中的显著目标;然后通过定位连通区域确定候选
-
基于深度学习的飞机目标跟踪应用研究
-
作者:
赵春梅
陈忠碧
张建林
来源:
光电工程
年份:
2019
文献类型 :
期刊
关键词:
鲁棒跟踪
实时跟踪
飞机目标
迁移学习
FDLAT
-
描述:
本文针对飞机目标,提出了基于多域网络(MDNet)的改进网络用于飞机跟踪的快速深度学习(FDLAT)跟踪网络,使用迁移学习弥补目标跟踪的小样本集缺陷。卷积层作为特征提取层,全连接层作为目标和背景的分类层,采用特定的飞机数据集来更新网络参数。训练完成之后,结合回归模型,采用简单的线性更新对飞机进行跟踪,算法实现了飞机旋转、相似目标、模糊目标、复杂环境、尺度变换、目标遮挡以及形态变换等复杂状态的鲁棒跟踪,速度达到平均20.36 f/s,在ILSVRC2015飞机检测数据集上成功率均值达到0.592,基本满足飞机实时跟踪。
-
基于多源遥感数据的违法建筑识别
-
作者:
黄磊
来源:
测绘通报
年份:
2019
文献类型 :
期刊
关键词:
违法建筑
遥感
多源
-
描述:
通过研究卫星遥感数据、航空遥感数据、倾斜摄影数据的各种特点,提出了利用多源遥感数据融合开展违法建筑快速识别的技术方法,并将其应用于到实际工作当中。提高了对存量违法建筑整治情况和新增违法建筑的识别效率,为违法建筑后期整治工作提供了技术保障。
-
航空磁放与遥感综合方法在地质找矿中的应用研究
-
作者:
李海镪
来源:
中国地质大学(北京)
年份:
2019
文献类型 :
学位论文
关键词:
航放
安康北部
航磁
矿产预测
遥感
-
描述:
航空磁放与遥感综合方法在地质找矿中的应用研究
-
基于维修日志的飞机设备故障原因判别方法
-
作者:
王锐光
吴际
刘超
杨海燕
来源:
软件学报
年份:
2019
文献类型 :
期刊
关键词:
维修日志
卷积神经网络
故障诊断
随机森林
-
描述:
在飞机维修与保养过程中,航空维修公司已积累了大量经验性的维修日志数据.合理利用该类维修日志,结合机器学习方法,可以辅助维修人员做出正确的故障诊断决策.首先,针对维修日志的特殊性,提出一种迭代式的故障诊断基本过程;其次,在传统的文本特征提取技术的基础上,基于领域内信息,提出一种基于卷积神经网络(convolution neural network,简称CNN)的小样本文本特征提取方法,在样本量较少的情况下,利用预测目标将字向量作为输入,得到更为充分的文本特征;最后,使用随机森林(randomforest,简称RF)模型,结合其他故障特征判别飞机设备的故障原因.卷积神经网络以故障原因为目标,预先对故障现象中的字向量进行训练,从而得到更能反映该领域的文本特征.与其他文本特征提取方法相比,该类方法在小样本数据上得到了更好的效果.同时,将卷积神经网络与随机森林模型应用于飞机设备的故障原因判别,并与其他文本特征提取方式和机器学习预测模型进行对比,说明了该类文本特征提取方式和故障原因判别方法的合理性和必要性.
-
基于维修日志的飞机设备故障原因判别方法
-
作者:
王锐光
吴际
刘超
杨海燕
来源:
软件学报
年份:
2019
文献类型 :
期刊
关键词:
维修日志
卷积神经网络
故障诊断
随机森林
-
描述:
在飞机维修与保养过程中,航空维修公司已积累了大量经验性的维修日志数据.合理利用该类维修日志,结合机器学习方法,可以辅助维修人员做出正确的故障诊断决策.首先,针对维修日志的特殊性,提出一种迭代式的故障诊断基本过程;其次,在传统的文本特征提取技术的基础上,基于领域内信息,提出一种基于卷积神经网络(convolution neural network,简称CNN)的小样本文本特征提取方法,在样本量较少的情况下,利用预测目标将字向量作为输入,得到更为充分的文本特征;最后,使用随机森林(randomforest,简称RF)模型,结合其他故障特征判别飞机设备的故障原因.卷积神经网络以故障原因为目标,预先对故障现象中的字向量进行训练,从而得到更能反映该领域的文本特征.与其他文本特征提取方法相比,该类方法在小样本数据上得到了更好的效果.同时,将卷积神经网络与随机森林模型应用于飞机设备的故障原因判别,并与其他文本特征提取方式和机器学习预测模型进行对比,说明了该类文本特征提取方式和故障原因判别方法的合理性和必要性.
-
基于改进候选区域网络的红外飞机检测
-
作者:
姜晓伟
王春平
付强
来源:
激光与红外
年份:
2019
文献类型 :
期刊
关键词:
聚类
红外飞机
卷积神经网络
目标检测
-
描述:
为较好地解决防空武器成像系统对空中红外飞机的检测问题。首先简要地概括了卷积神经网络的兴起和应用,其次在引入基于深度学习的目标检测模型Faster R-CNN的基础上,详细地介绍了经典K-means聚类算法的工作原理、实现流程、存在的弊端以及该算法的主要改进手段,并利用K-means聚类算法对Faster R-CNN锚点框的生成方式进行了改进。最后在CAFFE框架平台下进行了多次仿真实验,测试集来源于自建的专用于空中红外飞机检测任务的数据集,实验结果表明本文采用的改进手段可以在保证较高平均准确率AP的同时提高检测速度,并且给出了最适用于本文自建数据集利用聚类算法的k值。
-
卷积神经网络及其在航空视觉任务中的应用展望
-
作者:
漆昇翔
裘旭益
张伟
来源:
航空电子技术
年份:
2019
文献类型 :
期刊
关键词:
卷积神经网络
计算机视觉
深度学习
航空航天
-
描述:
从卷积神经网络的基本理论出发,介绍了几种经典卷积网络结构,并结合当前卷积神经网络在计算机视觉领域的应用现状,重点探讨了它在未来航空视觉相关任务系统中的应用前景,以及实施这些技术必须解决的若干问题,为未来航空装备智能化水平的进一步提升提供参考。