首页>
根据【关键词:集成学习,元学习,故障诊断,深度学习,联邦学习】搜索到相关结果 16 条
-
基于深度学习的航空发动机故障融合诊断
-
作者:
车畅畅
王华伟
倪晓梅
洪骥宇
来源:
北京航空航天大学学报
年份:
2018
文献类型 :
期刊
关键词:
航空发动机
故障诊断
深度学习
抗干扰能力
决策融合
-
描述:
通过对航空发动机故障诊断,能够正确判断各部件工作状态,快速确定维修方案,保证飞行安全。在结合深度信念网络和决策融合理论的基础上,提出了基于深度学习的航空发动机故障融合诊断模型。该模型通过分析发动机
-
基于深度学习的航空发动机故障融合诊断
-
作者:
车畅畅
王华伟
倪晓梅
洪骥宇
来源:
北京航空航天大学学报
年份:
2018
文献类型 :
期刊
关键词:
航空发动机
故障诊断
深度学习
抗干扰能力
决策融合
-
描述:
通过对航空发动机故障诊断,能够正确判断各部件工作状态,快速确定维修方案,保证飞行安全。在结合深度信念网络和决策融合理论的基础上,提出了基于深度学习的航空发动机故障融合诊断模型。该模型通过分析发动机
-
基于ECSDNN的航空安全事件风险等级预测
-
作者:
冯霞
桑潇
左海超
来源:
北京航空航天大学学报
年份:
2024
文献类型 :
期刊
关键词:
集成学习
代价敏感
深度神经网络
风险等级预测
嵌入特征编码
航空安全
-
描述:
投票方法,集成多个参数不同、性能各异的基分类器,构建航空安全事件风险等级预测模型。在航空安全事件报告系统(ASRS)数据集上的实验结果表明:相比基准算法,所提ECSDNN模型的预测准确率提升了4.51
-
融合注意力和多尺度特征的航空发动机缺陷检测
-
作者:
赵崇林
朱江
胡永进
李祖泽
王鹏举
谢涛
来源:
北京航空航天大学学报
年份:
2023
文献类型 :
期刊
关键词:
注意力机制
航空发动机
YOLOv5
深度学习
缺陷检测
-
描述:
损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
-
融合注意力和多尺度特征的航空发动机缺陷检测
-
作者:
赵崇林
朱江
胡永进
李祖泽
王鹏举
谢涛
来源:
北京航空航天大学学报
年份:
2023
文献类型 :
期刊
关键词:
注意力机制
航空发动机
YOLOv5
深度学习
缺陷检测
-
描述:
损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
-
遥感图像飞机目标高效搜检深度学习优化算法
-
作者:
郭琳
秦世引
来源:
北京航空航天大学学报
年份:
2019
文献类型 :
期刊
关键词:
停机坪与跑道分割
深度神经网络
深度学习
飞机目标检测
大幅面遥感图像
-
描述:
为了实现大幅面遥感图像中飞机目标的高效检测与准确定位,通过深度神经网络(DNN)的级联组合,提出了一种新颖的搜寻与检测相集成的飞机目标高效检测算法。首先,运用高性能的端到端DNN网络,进行停机坪与跑道区域的像素级高效精准分割,从而大幅度缩小飞机目标的搜索范围,以降低虚警发生概率,完成飞机目标候选检测区域的快速搜寻。然后,针对分割所得停机坪与跑道区域,借助手工数据集对YOLO网络模型进行迁移式强化训练,一方面可以弥补训练集在样本类型与数据规模上的不足,另一方面借助YOLO网络的强时效性优势对飞机目标的位置进行回归求解,可以显著提高飞机目标的检测效率。停机坪与跑道区域分割DNN网络在分割精度与时效性上具有显著优势,而迁移式强化训练YOLO网络不仅具有很高的检测效率,在检测精度上也能保持良好的性能。通过一系列综合实验与对比分析,验证了提出的搜寻与检测相集成的DNN级联组合式飞机目标高效检测算法的性能优势。
-
遥感图像飞机目标高效搜检深度学习优化算法
-
作者:
郭琳
秦世引
来源:
北京航空航天大学学报
年份:
2019
文献类型 :
期刊
关键词:
停机坪与跑道分割
深度神经网络
深度学习
飞机目标检测
大幅面遥感图像
-
描述:
为了实现大幅面遥感图像中飞机目标的高效检测与准确定位,通过深度神经网络(DNN)的级联组合,提出了一种新颖的搜寻与检测相集成的飞机目标高效检测算法。首先,运用高性能的端到端DNN网络,进行停机坪与跑道区域的像素级高效精准分割,从而大幅度缩小飞机目标的搜索范围,以降低虚警发生概率,完成飞机目标候选检测区域的快速搜寻。然后,针对分割所得停机坪与跑道区域,借助手工数据集对YOLO网络模型进行迁移式强化训练,一方面可以弥补训练集在样本类型与数据规模上的不足,另一方面借助YOLO网络的强时效性优势对飞机目标的位置进行回归求解,可以显著提高飞机目标的检测效率。停机坪与跑道区域分割DNN网络在分割精度与时效性上具有显著优势,而迁移式强化训练YOLO网络不仅具有很高的检测效率,在检测精度上也能保持良好的性能。通过一系列综合实验与对比分析,验证了提出的搜寻与检测相集成的DNN级联组合式飞机目标高效检测算法的性能优势。
-
融合注意力和多尺度特征的航空发动机缺陷检测
-
作者:
赵崇林
朱江
胡永进
李祖泽
王鹏举
谢涛
来源:
北京航空航天大学学报
年份:
2023
文献类型 :
期刊
关键词:
注意力机制
航空发动机
YOLOv5
深度学习
缺陷检测
-
描述:
损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
-
融合注意力和多尺度特征的航空发动机缺陷检测
-
作者:
赵崇林
朱江
胡永进
李祖泽
王鹏举
谢涛
来源:
北京航空航天大学学报
年份:
2023
文献类型 :
期刊
关键词:
注意力机制
航空发动机
YOLOv5
深度学习
缺陷检测
-
描述:
损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
-
航空发动机润滑系统故障知识图谱构建及应用
-
作者:
吴闯
张亮
唐希浪
崔利杰
谢小月
来源:
北京航空航天大学学报
年份:
2024
文献类型 :
期刊
关键词:
航空发动机
深度学习
润滑系统
知识问答
知识图谱
-
描述:
由于航空发动机润滑系统结构功能复杂,基于现有的健康管理系统开展故障诊断存在可解释性不足及高度依赖专家经验的问题,提出一套面向航空发动机润滑系统的故障知识图谱构建方法。在结合专家知识设计润滑系统