首页>
根据【关键词:遥感图像,tiny,CSPNet,飞机检测,YOLOv4,激活函数】搜索到相关结果 58 条
-
基于YOLO算法的遥感图像飞机目标检测技术研究
-
作者:
张欣
来源:
中国科学院大学(中国科学院长春光学精密机械与物理研究所)
年份:
2021
文献类型 :
学位论文
关键词:
遥感图像
tiny
CSPNet
飞机检测
YOLOv4
激活函数
-
描述:
基于YOLO算法的遥感图像飞机目标检测技术研究
-
YOLOv4-tiny及其改进算法在航空机务维修照相管理中的应用
-
作者:
张锐丽
张琦
高万春
李江龙
来源:
兵工自动化
年份:
2022
文献类型 :
期刊
关键词:
注意力机制
tiny
目标检测
YOLOv4
照相管理
-
描述:
针对飞机机务维修照相管理存在工作量大、不精确等问题,提出一种利用深度学习YOLOv4-tiny算法来执行照片对比检测的方法。利用一个自制的数据集来训练网络模型,为解决开口销螺母及其他背景干扰,引入
-
基于改进的YOLOv4-tiny遥感影像飞机检测系统的开发
-
作者:
付俊炜
来源:
北京交通大学
年份:
2022
文献类型 :
学位论文
关键词:
tiny
深度学习
目标检测
YOLOv4
模型部署
-
描述:
基于改进的YOLOv4-tiny遥感影像飞机检测系统的开发
-
基于YOLO架构的海上遇险航空器识别方法研究
-
作者:
刘皓晨
来源:
中国民用航空飞行学院
年份:
2021
文献类型 :
学位论文
关键词:
tiny
深度学习
目标识别
YOLOv4
海上搜救
-
描述:
基于YOLO架构的海上遇险航空器识别方法研究
-
基于最优区域生成的深度多尺度融合遥感飞机检测方法
-
作者:
刘晨
郑恩让
张桐
来源:
科学技术与工程
年份:
2020
文献类型 :
期刊
关键词:
遥感图像
飞机检测
多尺度融合
锚框
-
描述:
基于最优区域生成的深度多尺度融合遥感飞机检测方法
-
基于卷积神经网络的遥感图像飞机检测
-
作者:
张义德
胡长雨
胡春育
来源:
光电子技术
年份:
2017
文献类型 :
期刊
关键词:
遥感图像
卷积神经网络
微调
迁移学习
飞机检测
-
描述:
提出一种CNN的遥感图像飞机检测的方法。首先获得预训练好的CNN,然后通过参数迁移获得五层卷积层模型参数,接着利用遥感图像对第五层卷积层进行微调获得一个特征提取器。将特征提取器用于提取遥感图像训练集的深度特征,训练可变形部件检测模型。实验表明,提出的方法大大提高了遥感图像飞机目标检测精度,准确率达96%以上。
-
基于深度学习的遥感图像飞机检测方法研究
-
作者:
彭娜
来源:
河北工程大学
年份:
2022
文献类型 :
学位论文
关键词:
遥感图像
注意力机制
飞机检测
特征增强
残差连接
轻量级
-
描述:
基于深度学习的遥感图像飞机检测方法研究
-
一种基于级联神经网络的飞机检测方法
-
作者:
王晓林
苏松志
刘晓颖
蔡国榕
李绍滋
来源:
智能系统学报
年份:
2021
文献类型 :
期刊
关键词:
嵌入式设备
遥感图像
级联
卷积神经网络
两阶段
深度学习
飞机检测
由粗到细
-
描述:
由于旋转角度多样性、极端的尺度差异的影响,遥感图像中的飞机检测目前仍存在挑战。为了解决旋转和尺度的问题,目前的策略是将现有的自然场景下的目标检测算法(如Faster R-CNN、SSD等)直接迁移到遥感图像中。这些算法的主干网络复杂,模型占用空间大,难以应用到低功耗和嵌入式设备中。为了在准确率不降低的情况下提高检测速度,本文提出了一个仅包含9层的卷积神经网络来解决飞机检测问题。该网络采用了由粗到细的策略,通过级联两个网络的方式减少计算开销。为了评估方法的有效性,我们建立了一个针对飞机检测的遥感数据集。实验结果表明,该方法超越了VGG16等复杂的主干网络,达到了接近主流检测方法的性能表现,同时显著降低了参数量并使检测速度提高了2倍以上。
-
基于深度学习孔探图像的航空发动机缺陷识别研究
-
作者:
马瑞阳
来源:
中国民用航空飞行学院
年份:
2021
文献类型 :
学位论文
关键词:
孔探检查
深度学习
缺陷识别
CFM56
YOLOv4
-
描述:
基于深度学习孔探图像的航空发动机缺陷识别研究
-
基于改进YOLOv4的航空发动机损伤检测方法
-
作者:
蔡舒妤
闫子砚
师利中
来源:
现代制造工程
年份:
2023
文献类型 :
期刊
关键词:
损伤检测
卷积注意力模块
YOLOv4
深度可分离卷积
MobileNetv3
-
描述:
针对现有目标检测模型参数量大、检测速度慢,难以适应航空发动机孔探检测轻量化应用需求的问题,提出了基于YOLOv4目标检测算法的轻量化航空发动机损伤检测模型。设计了基于深度可分离卷积的轻量化特征融合结构,在YOLOv4的颈部结构(Neck)中,将普通卷积重构为逐通道卷积和逐点卷积的形式,有效减少了网络中的冗余参数;为进一步降低模型参数量,使用MobileNetv3作为特征提取网络。在减少参数量的同时,2种轻量化改进方法有效提高了模型的检测速度;在轻量化后的路径聚合网络(Path Aggregation Network, PANet)中加入卷积注意力模块(Convolutional Block Attention Module, CBAM),通过仅引入少量的参数来提高轻量化网络的损伤检测精度。实验结果表明,改进YOLOv4算法的平均精度均值(mean Average Precision, mAP)为89.82%,模型大小为73.29 MB,检测速度为37.3 FPS。与YOLOv4目标检测算法相比,改进YOLOv4算法以3.55%的mAP损失,使模型参数量降低了约2/3,检测速度提高了1.6倍,综合检测性能更优,可更好地满足孔探检测应用的需求,为航空发动机损伤智能化检测提供轻量化模型支撑。