基于改进YOLOv4的航空发动机损伤检测方法

日期:2023.02.18 点击数:3

【类型】期刊

【作者】蔡舒妤 闫子砚 师利中  

【刊名】现代制造工程

【关键词】 损伤检测,卷积注意力模块,YOLOv4,深度可分离卷积,MobileNetv3

【摘要】针对现有目标检测模型参数量大、检测速度慢,难以适应航空发动机孔探检测轻量化应用需求的问题,提出了基于YOLOv4目标检测算法的轻量化航空发动机损伤检测模型。设计了基于深度可分离卷积的轻量化特征融合结构,在YOLOv4的颈部结构(Neck)中,将普通卷积重构为逐通道卷积和逐点卷积的形式,有效减少了网络中的冗余参数;为进一步降低模型参数量,使用MobileNetv3作为特征提取网络。在减少参数量的同时,2种轻量化改进方法有效提高了模型的检测速度;在轻量化后的路径聚合网络(Path Aggregation Network, PANet)中加入卷积注意力模块(Convolutional Block Attention Module, CBAM),通过仅引入少量的参数来提高轻量化网络的损伤检测精度。实验结果表明,改进YOLOv4算法的平均精度均值(mean Average Precision, mAP)为89.82%,模型大小为73.29 MB,检测速度为37.3 FPS。与YOLOv4目标检测算法相比,改进YOLOv4算法以3.55%的mAP损失,使模型参数量降低了约2/3,检测速度提高了1.6倍,综合检测性能更优,可更好地满足孔探检测应用的需求,为航空发动机损伤智能化检测提供轻量化模型支撑。

【年份】2023

【作者单位】中国民航大学航空工程学院;

【期号】02

【页码】99-108

3 0
Rss订阅