首页>
根据【关键词:遥感图像,极坐标系,深度学习,亚像素,倾斜目标检测】搜索到相关结果 199 条
-
遥感图像飞机目标检测与识别关键技术研究
-
作者:
李冠典
来源:
长春理工大学
年份:
2022
文献类型 :
学位论文
关键词:
飞机目标高效检测
遥感图像
卷积神经网络
深度学习
目标检测
飞机区域识别网络
-
描述:
遥感图像飞机目标检测与识别关键技术研究
-
基于深度学习的遥感图像飞机检测与分割
-
作者:
吴启凡
来源:
西安电子科技大学
年份:
2022
文献类型 :
学位论文
关键词:
非对称卷积
遥感图像
R
CNN
深度学习
Mask
自校准卷积
-
描述:
基于深度学习的遥感图像飞机检测与分割
-
一种基于级联神经网络的飞机检测方法
-
作者:
王晓林
苏松志
刘晓颖
蔡国榕
李绍滋
来源:
智能系统学报
年份:
2021
文献类型 :
期刊
关键词:
嵌入式设备
遥感图像
级联
卷积神经网络
两阶段
深度学习
飞机检测
由粗到细
-
描述:
由于旋转角度多样性、极端的尺度差异的影响,遥感图像中的飞机检测目前仍存在挑战。为了解决旋转和尺度的问题,目前的策略是将现有的自然场景下的目标检测算法(如Faster R-CNN、SSD等)直接迁移到遥感图像中。这些算法的主干网络复杂,模型占用空间大,难以应用到低功耗和嵌入式设备中。为了在准确率不降低的情况下提高检测速度,本文提出了一个仅包含9层的卷积神经网络来解决飞机检测问题。该网络采用了由粗到细的策略,通过级联两个网络的方式减少计算开销。为了评估方法的有效性,我们建立了一个针对飞机检测的遥感数据集。实验结果表明,该方法超越了VGG16等复杂的主干网络,达到了接近主流检测方法的性能表现,同时显著降低了参数量并使检测速度提高了2倍以上。
-
面向航空锪窝孔制孔质量的手持式视觉检测方法
-
作者:
张辉
潘新
李海伟
杜杰
罗志光
郭飞燕
来源:
航空制造技术
年份:
2022
文献类型 :
期刊
关键词:
手持式
飞机装配
亚像素
视觉检测
锪窝孔
-
描述:
飞机结构存在大量的标准连接孔,为了保证飞机装配质量,需要对锪窝孔的制孔质量进行检测。基于机器人或机床的视觉检测设备存在定位精度低、局部位置难到达、易受环境光影响等问题,提出了一种面向航空锪窝孔制孔质量的手持式视觉检测方法,开发了锪窝孔孔径及窝深的亚像素检测算法,设计了一种手持式视觉检测设备,对机械结构、硬件系统和软件系统进行了详细阐述。以航空结构标准试验件为对象,将本方法所测孔径和锪窝深度与第三方认证机构的测试结果进行了对比。结果表明,本方法孔径精度测量精度优于0.01 mm,锪窝深度测量精度优于0.1mm。设计的手持式视觉检测设备检测精度高、应用范围广且不受环境光的影响。
-
基于半监督学习的遥感飞机图像检测方法
-
作者:
杜泽星
殷进勇
杨建
来源:
激光与光电子学进展
年份:
2019
文献类型 :
期刊
关键词:
遥感图像
目标检测
半监督学习
生成式对抗网络
-
描述:
针对现有的基于深度学习的遥感飞机图像检测方法,在训练时需要大量的带标记数据集和较长的训练时间,本文提出了一种基于生成式对抗网络的半监督学习方法。采用两种粒度的深度卷积生成式对抗网络,分别提取了待检测目标的边缘特征信息和深层语义特征。通过结合两种粒度的生成式对抗网络的判别器网络模型,设计了目标检测网络模型。实验结果表明,本文所设计的这种半监督学习训练方法有着更快的收敛速度,并且在训练时需要的标记样本更少。
-
基于最优区域生成的深度多尺度融合遥感飞机检测方法
-
作者:
刘晨
郑恩让
张桐
来源:
科学技术与工程
年份:
2020
文献类型 :
期刊
关键词:
遥感图像
飞机检测
多尺度融合
锚框
-
描述:
基于最优区域生成的深度多尺度融合遥感飞机检测方法
-
卫星遥感图像中飞机识别算法的研究
-
作者:
袁红江
来源:
聊城大学
年份:
2020
文献类型 :
学位论文
关键词:
遥感图像
飞机识别
SIFT算法
自动阈值分割
-
描述:
卫星遥感图像中飞机识别算法的研究
-
基于卷积神经网络的遥感图像飞机检测
-
作者:
张义德
胡长雨
胡春育
来源:
光电子技术
年份:
2017
文献类型 :
期刊
关键词:
遥感图像
卷积神经网络
微调
迁移学习
飞机检测
-
描述:
提出一种CNN的遥感图像飞机检测的方法。首先获得预训练好的CNN,然后通过参数迁移获得五层卷积层模型参数,接着利用遥感图像对第五层卷积层进行微调获得一个特征提取器。将特征提取器用于提取遥感图像训练集的深度特征,训练可变形部件检测模型。实验表明,提出的方法大大提高了遥感图像飞机目标检测精度,准确率达96%以上。
-
基于深度神经网络的遥感图像飞机目标检测
-
作者:
李文斌
何冉
来源:
计算机工程
年份:
2021
文献类型 :
期刊
关键词:
遥感图像
卷积神经网络
目标检测
密度聚类
像素级标签
-
描述:
。实验结果表明,DC-DNN模型对于遥感图像飞机目标检测的准确率、召回率和F1值分别为95.78%、98.98%和0.973 5,相比WS-DNN、R-FCN等模型具有更好的检测性能和泛化能力。
-
基于深度神经网络的遥感图像飞机目标检测
-
作者:
李文斌
何冉
来源:
计算机工程
年份:
2021
文献类型 :
期刊
关键词:
遥感图像
卷积神经网络
目标检测
密度聚类
像素级标签
-
描述:
。实验结果表明,DC-DNN模型对于遥感图像飞机目标检测的准确率、召回率和F1值分别为95.78%、98.98%和0.973 5,相比WS-DNN、R-FCN等模型具有更好的检测性能和泛化能力。