关键词
基于YOLOv5的航空维修工具识别
作者: 丁发军     刘韶坤     刘义平   来源: 中国民航飞行学院学报 年份: 2023 文献类型 : 期刊 关键词: 目标检测算法   YOLOv5   工具识别   航空维修  
描述: ,识别精度降低17.4%。目前,YOLOv5目标检测算法具有较高的识别精度,但仍需针对扭曲、模糊不清的图形进行算法改进。
基于YOLOv5的航空维修工具识别
作者: 丁发军     刘韶坤     刘义平   来源: 中国民航飞行学院学报 年份: 2023 文献类型 : 期刊 关键词: 目标检测算法   YOLOv5   工具识别   航空维修  
描述: ,识别精度降低17.4%。目前,YOLOv5目标检测算法具有较高的识别精度,但仍需针对扭曲、模糊不清的图形进行算法改进。
融合注意力和多尺度特征的航空发动机缺陷检测
作者: 赵崇林   朱江   胡永进   李祖泽   王鹏举   谢涛   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   YOLOv5   深度学习   缺陷检测  
描述: 损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
融合注意力和多尺度特征的航空发动机缺陷检测
作者: 赵崇林   朱江   胡永进   李祖泽   王鹏举   谢涛   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   YOLOv5   深度学习   缺陷检测  
描述: 损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
基于改进YOLOv5的航空发动机表面缺陷检测模型
作者: 李鑫   李香蓉   汪诚   李秋良   李卓越   来源: 激光与光电子学进展 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   机器视觉   YOLOv5   表面缺陷检测  
描述: 的同时提高预测框回归精度。实验表明,本文提出的YOLOv5-CE模型,相比原YOLOv5s网络,在检测速度几乎没有下降的情况下m AP值提高了1.2%,达到了98.5%,能够实现对航空发动机四种常见类型缺陷的高效智能检测。
融合注意力和多尺度特征的航空发动机缺陷检测
作者: 赵崇林   朱江   胡永进   李祖泽   王鹏举   谢涛   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   YOLOv5   深度学习   缺陷检测  
描述: 损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
基于改进YOLOv5的航空发动机表面缺陷检测模型
作者: 李鑫   李香蓉   汪诚   李秋良   李卓越   来源: 激光与光电子学进展 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   机器视觉   YOLOv5   表面缺陷检测  
描述: 的同时提高预测框回归精度。实验表明,本文提出的YOLOv5-CE模型,相比原YOLOv5s网络,在检测速度几乎没有下降的情况下m AP值提高了1.2%,达到了98.5%,能够实现对航空发动机四种常见类型缺陷的高效智能检测。
融合注意力和多尺度特征的航空发动机缺陷检测
作者: 赵崇林   朱江   胡永进   李祖泽   王鹏举   谢涛   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   YOLOv5   深度学习   缺陷检测  
描述: 损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
航空机载红外图像的车辆目标自主检测识别
作者: 杨雪     修吉宏     刘小嘉     罗宁   来源: 激光与红外 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   RFBs   YOLOv5   目标检测   红外图像   BiFPN  
描述: 添加CBAM注意力机制以提升检测精度。实验结果表明:在DroneVehicle数据集上的检测效果要优于原始网络,精确率(Precision)提升2.8%,召回率(Recall)提升16%,平均精度(mAP)提升2.3%。结论:可有效应用于航空红外图像的车辆自主检测识别。
航空机载红外图像的车辆目标自主检测识别
作者: 杨雪     修吉宏     刘小嘉     罗宁   来源: 激光与红外 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   RFBs   YOLOv5   目标检测   红外图像   BiFPN  
描述: 添加CBAM注意力机制以提升检测精度。实验结果表明:在DroneVehicle数据集上的检测效果要优于原始网络,精确率(Precision)提升2.8%,召回率(Recall)提升16%,平均精度(mAP)提升2.3%。结论:可有效应用于航空红外图像的车辆自主检测识别。
< 1 2
Rss订阅