关键词
基于改进候选区域网络的红外飞机检测
作者: 姜晓伟   王春平   付强   来源: 激光与红外 年份: 2019 文献类型 : 期刊 关键词: 聚类   红外飞机   卷积神经网络   目标检测  
描述: 为较好地解决防空武器成像系统对空中红外飞机的检测问题。首先简要地概括了卷积神经网络的兴起和应用,其次在引入基于深度学习的目标检测模型Faster R-CNN的基础上,详细地介绍了经典K-means
卷积神经网络及其在航空视觉任务中的应用展望
作者: 漆昇翔   裘旭益   张伟   来源: 航空电子技术 年份: 2019 文献类型 : 期刊 关键词: 卷积神经网络   计算机视觉   深度学习   航空航天  
描述:卷积神经网络的基本理论出发,介绍了几种经典卷积网络结构,并结合当前卷积神经网络在计算机视觉领域的应用现状,重点探讨了它在未来航空视觉相关任务系统中的应用前景,以及实施这些技术必须解决的若干问题,为未来航空装备智能化水平的进一步提升提供参考。
基于卷积神经网络迁移学习的飞机目标识别
作者: 杨予昊   孙晶明   虞盛康   来源: 现代雷达 年份: 2020 文献类型 : 期刊 关键词: 小样本   卷积神经网络   飞机目标识别   迁移学习  
描述: 基于卷积神经网络迁移学习的飞机目标识别
基于深度卷积神经网络的航空器检测与识别
作者: 俞汝劼   杨贞   熊惠霖   来源: 计算机应用 年份: 2017 文献类型 : 期刊 关键词: 卷积神经网络   深度学习   目标检测识别   航空器检测  
描述: 针对军用机场大尺寸卫星图像中航空器检测识别的具体应用场景,建立了一套实时目标检测识别框架,将深度卷积神经网络应用到大尺寸图像中的航空器目标检测与识别任务中。首先,将目标检测的任务看成空间上独立
基于卷积神经网络的航空零件去噪技术
作者: 赵安安   郑炜   郭俊刚   来源: 机械设计与制造工程 年份: 2023 文献类型 : 期刊 关键词: 卷积神经网络   法线估计   计算机辅助设计   点云去噪  
描述: 为去除在用三维激光扫描技术扫描航空零部件时,因扫描环境、设备等因素带来的大量零件点云噪声,提出基于卷积神经网络的航空零件去噪技术。首先应用经典卷积神经网络预测点云法线信息,然后以此进一步对点云进行位置更新,从而实现点云去噪。经实验证明,与目前的去噪方法相比,所提方法在去噪方面更具优越性。
深度卷积网络在航空高光谱岩性识别中的应用——以塔木素铀矿床北部地区为例
作者: 张川     易敏     童勤龙     叶发旺     徐清俊     李泊凇   来源: 世界核地质科学 年份: 2024 文献类型 : 期刊 关键词: 卷积神经网络   深度学习   航空高光谱遥感   岩性识别  
描述: 岩矿信息识别是高光谱遥感在地质勘探领域的主要应用方向。传统高光谱遥感方法尽管在矿物识别中取得了良好效果,但对于岩性识别存在瓶颈。深度学习是当前人工智能领域的研究热点,卷积神经网络是适用于图像识别
基于目标图像块激活的航空图像目标检测技术研究
作者: 张佳     冯婕     张骏鹏     朱潇雨   来源: 航空科学技术 年份: 2025 文献类型 : 期刊 关键词: 航空图像   注意力机制   高效目标检测   卷积神经网络  
描述: 基于目标图像块激活的航空图像目标检测技术研究
基于Ghost-YOLOv5的光学图像飞机目标检测方法
作者: 赵玲娜   来源: 现代商贸工业 年份: 2025 文献类型 : 期刊 关键词: 卷积神经网络   YOLOv5   光学飞机目标检测   Ghostnet  
描述: 基于Ghost-YOLOv5的光学图像飞机目标检测方法
基于深度学习的离场航空器滑行时间预测(英文)
作者: 李楠   焦庆宇   朱新华   王少聪   来源: Transactions of Nanjing University of Aeronautics and Astronautics 年份: 2021 文献类型 : 期刊 关键词: 卷积神经网络   场面运行   滑行时间   深度学习   航空运输  
描述: 随着航班数量的不断增加,机场协同决策系统(Airport collaborative decision-making,A-CDM)的使用也越来越广泛。滑行时间预测的准确性对A-CDM计算离场航空器起飞排序队列和给出准确的撤轮挡时间具有重要的作用。本文提出一种基于时间-空间-环境数据的深度学习模型(Spatio-temporal-environment deep learning model,STEDL)来提高滑行时间预测的准确性。该模型由时间-流量变量(机场实际容量,场面航空器数量,时间段)、空间变量(滑行距离)、外部环境变量(天气,流控信息,跑道运行模式,机型)3部分组成。使用STEDL模型对香港机场离场航空器滑行时间进行预测验证。实验结果显示,STEDL模型预测准确率为95.4%,预测精度明显优于其他机器学习算法。
基于深度神经网络的遥感图像飞机目标检测
作者: 李文斌   何冉   来源: 计算机工程 年份: 2021 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   目标检测   密度聚类   像素级标签  
描述: 针对遥感图像飞机检测中存在的背景复杂和目标尺度变化大等问题,提出基于深度神经网络的遥感图像飞机目标检测模型DC-DNN。利用图像底层特征制作像素级标签完成全卷积神经网络(FCN)模型训练,将FCN
< 1 2 3 4 5 ... 28 29 30
Rss订阅