首页>
根据【关键词:航空发动机,Hyperband算法,深度学习,剩余使用寿命,多维长序列信号,膨胀卷积】搜索到相关结果 2832 条
-
基于时空特征的航空发动机剩余使用寿命预测
-
作者:
徐震震
薛林
马凯
杨玉迪
来源:
电子测量技术
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
深度学习
时间特征
剩余寿命预测
空间特征
-
描述:
航空发动机作为一种高精密机械部件,对飞机性能和可靠性有重要影响。准确的剩余寿命预测可以降低维修成本,减少安全事故的发生。现有的预测方法只关注传感器数据之间的时间关系,忽略了传感器之间的空间关系。本文
-
-
作者:
秦子轩
张晓东
白广芝
任先聪
来源:
航空发动机
年份:
2024
文献类型 :
期刊
关键词:
航空发动机
剩余可用寿命
深度学习
多头注意力机制
多尺度卷积双向长短期记忆网络
-
描述:
-
基于SW-YOLO模型的航空发动机叶片损伤实时检测
-
作者:
何宇豪
曹学国
刘信良
蒋浩坤
王静秋
来源:
推进技术
年份:
2024
文献类型 :
期刊
关键词:
航空发动机
实时检测
叶片损伤
深度学习
目标检测
孔探检测
-
描述:
较小损伤区域的检测,如烧蚀损伤,平均精度提高了8.1%。最后,通过与YOLOv5,Faster R-CNN,SSD模型的对比实验,结果表明SW-YOLO模型的平均精度均值分别提高了7%,6.2%,6.3%,检测速度满足实时检测需求,有利于提高航空发动机孔探检测的自动化和智能化水平。
-
基于深度学习的航空发动机涡轮叶片自动射线检测技术研究
-
作者:
王栋欢
肖洪
吴丁毅
来源:
推进技术
年份:
2024
文献类型 :
期刊
关键词:
航空发动机
涡轮叶片
射线图像
深度学习
射线检测
缺陷检测
-
描述:
一直以来,航空发动机涡轮叶片的射线检测依靠检验员人工评片。为避免经验差异、眼睛疲劳、标准理解等人为因素影响,有效改善传统射线检测费时费力、效率低下等问题,针对航空发动机涡轮叶片射线图像,基于
-
基于RDK-ELM的航空发动机控制系统故障诊断
-
作者:
陈虹潞
黄向华
来源:
航空发动机
年份:
2021
文献类型 :
期刊
关键词:
航空发动机
极限学习机
控制系统
简约改进
故障诊断
深度学习
-
描述:
为保持较高诊断正确率,缩短训练时间,满足航空发动机故障诊断对于实时性和高诊断率的需求,提出1种对深度核极限学习机的简约改进方法。输入数据中随机选取部分数据作为支持向量,结合深度学习网络的多层结构
-
基于RDK-ELM的航空发动机控制系统故障诊断
-
作者:
陈虹潞
黄向华
来源:
航空发动机
年份:
2021
文献类型 :
期刊
关键词:
航空发动机
极限学习机
控制系统
简约改进
故障诊断
深度学习
-
描述:
为保持较高诊断正确率,缩短训练时间,满足航空发动机故障诊断对于实时性和高诊断率的需求,提出1种对深度核极限学习机的简约改进方法。输入数据中随机选取部分数据作为支持向量,结合深度学习网络的多层结构
-
基于深度学习的航空发动机涡轮叶片自动射线检测技术研究
-
作者:
王栋欢
肖洪
吴丁毅
来源:
推进技术
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
涡轮叶片
射线图像
深度学习
射线检测
缺陷检测
-
描述:
一直以来,航空发动机涡轮叶片的射线检测依靠检验员人工评片。为避免经验差异、眼睛疲劳、标准理解等人为因素影响,有效改善传统射线检测费时费力、效率低下等问题,针对航空发动机涡轮叶片射线图像,基于
-
基于深度学习的航空发动机涡轮叶片自动射线检测技术研究
-
作者:
王栋欢
肖洪
吴丁毅
来源:
推进技术
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
涡轮叶片
射线图像
深度学习
射线检测
缺陷检测
-
描述:
一直以来,航空发动机涡轮叶片的射线检测依靠检验员人工评片。为避免经验差异、眼睛疲劳、标准理解等人为因素影响,有效改善传统射线检测费时费力、效率低下等问题,针对航空发动机涡轮叶片射线图像,基于
-
基于SW/YOLO模型的航空发动机叶片损伤实时检测
-
作者:
何宇豪
曹学国
刘信良
蒋浩坤
王静秋
来源:
推进技术
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
实时检测
叶片损伤
深度学习
目标检测
孔探检测
-
描述:
,有利于较小损伤区域的检测,如烧蚀损伤,平均精度提高了8.1%。最后,通过与YOLOv5,Faster R/CNN,SSD模型的对比实验,结果表明SW/YOLO模型的平均精度均值分别提高了7%,6.2%,6.3%,检测速度满足实时检测需求,有利于提高航空发动机孔探检测的自动化和智能化水平。
-
基于深度学习的航空发动机涡轮叶片自动射线检测技术研究
-
作者:
王栋欢
肖洪
吴丁毅
来源:
推进技术
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
涡轮叶片
射线图像
深度学习
射线检测
缺陷检测
-
描述:
一直以来,航空发动机涡轮叶片的射线检测依靠检验员人工评片。为避免经验差异、眼睛疲劳、标准理解等人为因素影响,有效改善传统射线检测费时费力、效率低下等问题,针对航空发动机涡轮叶片射线图像,基于
<
1
2
3
...
6
7
8
...
282
283
284
>