首页>
根据【关键词:航空发动机,一维卷积残差网络,能谱分析,深度学习,磨损】搜索到相关结果 1184 条
-
基于编解码网络的航空影像像素级建筑物提取
-
作者:
陈凯强
高鑫
闫梦龙
张跃
孙显
来源:
遥感学报
年份:
2021
文献类型 :
期刊
关键词:
卷积神经网络
建筑物提取
深度学习
遥感
航空影像
-
描述:
建筑物提取在城市规划等土地利用分析中发挥着重要作用。用于提取建筑物的传统方法通常基于手工特征和分类器,导致精度较低。本文基于编解码结构的卷积神经网络CNN (Convolutional Neural Networks),自主学习多级的和具有区分度的特征来更好地辨识建筑物和背景,实现航空影像中的像素级建筑物提取。该网络由编码子网络和解码子网络两部分组成,编码子网络对输入图像进行空间分辨率压缩,完成特征提取;解码子网络从特征中提升空间分辨率,完成像素级的建筑物提取。此外,本文使用视野增强FoVE (Field-of-View Enhancement)方法减轻边缘现象(切片边缘附近的建筑物提取精度通常低于中心区域附近的精度)的影响,并分别在两个建筑物提取标准数据集上的实验表明,编解码卷积神经网络能有效实现像素级建筑物提取,FoVE能有效提高建筑物提取准确率;通过改变预测时切片大小和重叠度,分析其对建筑物提取结果的影响,揭示了FoVE的饱和性。
-
基于编解码网络的航空影像像素级建筑物提取
-
作者:
陈凯强
高鑫
闫梦龙
张跃
孙显
来源:
遥感学报
年份:
2021
文献类型 :
期刊
关键词:
卷积神经网络
建筑物提取
深度学习
遥感
航空影像
-
描述:
建筑物提取在城市规划等土地利用分析中发挥着重要作用。用于提取建筑物的传统方法通常基于手工特征和分类器,导致精度较低。本文基于编解码结构的卷积神经网络CNN (Convolutional Neural Networks),自主学习多级的和具有区分度的特征来更好地辨识建筑物和背景,实现航空影像中的像素级建筑物提取。该网络由编码子网络和解码子网络两部分组成,编码子网络对输入图像进行空间分辨率压缩,完成特征提取;解码子网络从特征中提升空间分辨率,完成像素级的建筑物提取。此外,本文使用视野增强FoVE (Field-of-View Enhancement)方法减轻边缘现象(切片边缘附近的建筑物提取精度通常低于中心区域附近的精度)的影响,并分别在两个建筑物提取标准数据集上的实验表明,编解码卷积神经网络能有效实现像素级建筑物提取,FoVE能有效提高建筑物提取准确率;通过改变预测时切片大小和重叠度,分析其对建筑物提取结果的影响,揭示了FoVE的饱和性。
-
基于深度学习的航空监视方法研究
-
作者:
王艳明
王宝珠
来源:
电子测量技术
年份:
2019
文献类型 :
期刊
关键词:
航空监视
深度学习
人工智能
国土安全
俯视视角
-
描述:
我国是一个幅员辽阔的国家,地理条件复杂,常规的国土安全巡检方法会耗费大量人力物力。为此,提出了一种基于深度学习的航空监视方法,其利用无人机从高空采集图像,并利用卷积神经网络对采集图像进行分类判断,从而对场景进行监视。其目的在于用人工智能的手段,通过无人机代替人工进行巡检,从而提高国土安全监视效率。为此,本文建立了包含10种不同场景的俯视视角的数据库。通过卷积神经网络模型,对不同场景的图像特征进行学习,使得模型可以分辨不同的场景。为了验证本方法的可行性,本文在10种空基视角的数据库上进行了实验,结果显示其分类准确率达到97%。说明本方法可满足安全监视的需求,为实现智能监视提供了思路。
-
一种高效的高分辨率遥感影像飞机目标检测方法
-
作者:
刘媛
姚剑
冯辰
来源:
测绘地理信息
年份:
2020
文献类型 :
期刊
关键词:
高分辨率遥感影像
直线概率图
深度学习
飞机检测
显著性
-
描述:
一种高效的高分辨率遥感影像飞机目标检测方法
-
某型军用飞机下降阶段燃油消耗模型研究
-
作者:
吴祯涛
李学仁
杜军
来源:
信号处理
年份:
2020
文献类型 :
期刊
关键词:
互信息
长短期记忆网络
飞参数据
深度学习
燃油消耗
-
描述:
某型军用飞机下降阶段燃油消耗模型研究
-
SAR图像飞机目标检测识别进展
-
作者:
郭倩
王海鹏
徐丰
来源:
雷达学报
年份:
2020
文献类型 :
期刊
关键词:
飞机识别
合成孔径雷达
散射信息
深度学习
飞机检测
-
描述:
目标检测与识别是高分辨合成孔径雷达(SAR)领域的热点问题。机场上飞机作为一种典型目标,其检测和识别有一定的独特性。该文回顾了SAR图像典型目标检测识别领域技术的发展过程,分析了SAR图像中飞机目标的散射机制及面临的技术难点,阐述了SAR飞机目标检测识别的系统流程、技术路线和关键科学问题,对基于传统与基于深度学习两个方面的飞机目标检测识别的研究进展进行了归纳总结,并讨论了各类方法的特点及存在的问题,展望了未来的发展趋势。该文认为如何将深度学习与目标电磁散射机理结合、提高网络或模型的泛化能力是提升SAR图像中目标检测识别精度的关键,并给出了一种基于散射信息与深度学习融合的飞机目标检测方法。
-
基于深度学习的航空发动机传感器故障检测
-
作者:
刘云龙
谢寿生
郑晓飞
边涛
来源:
传感器与微系统
年份:
2018
文献类型 :
期刊
关键词:
飞参数据
深度学习
故障检测
深度置信网络
航空发动机传感器
-
描述:
针对传统反向传播(BP)神经网络和支持向量机(SVM)存在的过拟合、维数灾难、参数选择困难等问题,提出了一种基于深度学习算法的航空发动机传感器故障检测方法。对发动机参数记录仪采集的多维数据进行预处理
-
遥感图像飞机目标高效搜检深度学习优化算法
-
作者:
郭琳
秦世引
来源:
北京航空航天大学学报
年份:
2019
文献类型 :
期刊
关键词:
停机坪与跑道分割
深度神经网络
深度学习
飞机目标检测
大幅面遥感图像
-
描述:
为了实现大幅面遥感图像中飞机目标的高效检测与准确定位,通过深度神经网络(DNN)的级联组合,提出了一种新颖的搜寻与检测相集成的飞机目标高效检测算法。首先,运用高性能的端到端DNN网络,进行停机坪与跑道区域的像素级高效精准分割,从而大幅度缩小飞机目标的搜索范围,以降低虚警发生概率,完成飞机目标候选检测区域的快速搜寻。然后,针对分割所得停机坪与跑道区域,借助手工数据集对YOLO网络模型进行迁移式强化训练,一方面可以弥补训练集在样本类型与数据规模上的不足,另一方面借助YOLO网络的强时效性优势对飞机目标的位置进行回归求解,可以显著提高飞机目标的检测效率。停机坪与跑道区域分割DNN网络在分割精度与时效性上具有显著优势,而迁移式强化训练YOLO网络不仅具有很高的检测效率,在检测精度上也能保持良好的性能。通过一系列综合实验与对比分析,验证了提出的搜寻与检测相集成的DNN级联组合式飞机目标高效检测算法的性能优势。
-
通用航空飞行员异常行为检测及预警系统设计与实现
-
作者:
陈农田
满永政
袁浩
董俊杰
宁威峰
李俊辉
来源:
实验室研究与探索
年份:
2022
文献类型 :
期刊
关键词:
检测预警
深度学习
改进YOLOv3
图像视频采集
驾驶异常行为
-
描述:
为了实现通用航空飞行安全精准智慧监管,以通用航空飞行员驾驶舱异常行为图像和视频数据为基础,设计了通用航空飞行员异常行为检测预警系统。该系统采用高精度摄像头实现通用航空器驾驶舱飞行员行为动作图像和视频捕获,结合改进的YOLOv3深度学习算法开展飞行员异常行为识别检测并建立声音和灯光告警触发机制,实现飞行员异常行为检测预警可视化。通过树莓派将预警信息上传云端,同步实现图像和视频数据实时存储及可追溯性。经实验测试验证,驾驶舱中飞行员抽烟行为检测准确率达88%、打电话行为检测准确率达92%,表明该系统能稳定且有效实现面向通用航空运行安全的飞行员异常行为检测预警,为下一步开展通用航空器机载原型系统适航工程验证奠定基础。
-
一种用于预测航空遥感影像光谱信息的深度学习方法
-
作者:
郝明达
普运伟
周家厚
杨洋
陈如俊
来源:
遥感信息
年份:
2022
文献类型 :
期刊
关键词:
高光谱遥感重建
深度学习
密集卷积神经网络
光谱超分辨率
自适应注意力机制
-
描述:
为从航空RGB遥感影像中预测高光谱影像中有用的地物属性信息,提高航空RGB遥感影像光谱的分辨率,提出一种轻量型的深度学习网络模型。所提模型组合了密集卷积神经网络架构和自适应注意力机制的优点,构建了一种新型密集注意力卷积神经网络模型(dense attention convolutional neural network model, DACNN model)。在真实的多模态AeroRIT场景影像和同源的雄安航空遥感影像上的多种定量对比实验结果表明,所提出的网络架构可以生成与原始高光谱遥感影像相似的空间特征和光谱特征,并且所需参数量显著降低,具有较好的性能和适用性,且所提模型架构方法具有一定的通用性。
<
1
2
3
...
6
7
8
...
117
118
119
>