首页>
根据【关键词:特征提取,全卷积神经网络,目标检测】搜索到相关结果 33 条
-
航空遥感光电图像预处理与目标特征提取技术研究
-
作者:
李晓峰
来源:
哈尔滨工业大学
年份:
2019
文献类型 :
学位论文
关键词:
图像去雾
Gabor变换
特征提取
卷积神经网络
-
描述:
航空遥感光电图像预处理与目标特征提取技术研究
-
基于信息交互和迁移学习的超高分辨率SAR图像中飞机目标检测
-
作者:
王莹
来源:
西安电子科技大学
年份:
2019
文献类型 :
学位论文
关键词:
目标检测
迁移学习
SAR图像
阴影补全
信息交互
-
描述:
基于信息交互和迁移学习的超高分辨率SAR图像中飞机目标检测
-
飞机蒙皮图像的深度特征学习与损伤监测
-
作者:
李慧
来源:
北京邮电大学
年份:
2019
文献类型 :
学位论文
关键词:
飞机蒙皮
卷积神经网络
SSD
深度学习
目标检测
-
描述:
飞机蒙皮图像的深度特征学习与损伤监测
-
遥感图像飞机目标检测方法研究
-
作者:
张晨露
来源:
中国科学院大学(中国科学院西安光学精密机械研究所)
年份:
2019
文献类型 :
学位论文
关键词:
遥感图像
感受野
卷积神经网络
目标检测
飞机目标
-
描述:
遥感图像飞机目标检测方法研究
-
高分辨率遥感图像中飞机目标自动检测方法研究
-
作者:
任瑞龙
来源:
电子科技大学
年份:
2019
文献类型 :
学位论文
关键词:
遥感图像
语义分割
深度学习
目标检测
飞机
-
描述:
高分辨率遥感图像中飞机目标自动检测方法研究
-
复杂场景下飞机目标检测与跟踪技术研究
-
作者:
刘海燕
来源:
哈尔滨工程大学
年份:
2019
文献类型 :
学位论文
关键词:
复杂场景
卷积神经网络
遥感视频
目标检测
目标自动跟踪
-
描述:
复杂场景下飞机目标检测与跟踪技术研究
-
基于k最近邻的激光雷达飞机尾涡识别
-
作者:
潘卫军
吴郑源
张晓磊
来源:
激光技术
年份:
2019
文献类型 :
期刊
关键词:
激光技术
特征提取
尾涡识别
K最近邻
多普勒激光雷达
-
描述:
为对脉冲多普勒激光雷达探测径向速度场进行识别,建立了基于k最近邻(KNN)方法的分类模型。本文首先结合飞机尾涡Hallock-Burnham模型和脉冲多普勒激光雷达特性,提取脉冲多普勒激光雷达探测径向速度场的特征参数。基于现有测试数据,在非均匀背景风场下利用KNN方法对飞机尾涡进行识别。以准确率(ACC)和ROC曲线下的面积(AUC)作为评估标准,本文所提出的方法对尾流识别所获得的ACC和AUC分别为0.772和0.855。实验结果表明,该方法可有效地识别飞机尾涡并具备较好的鲁棒性。
-
基于RBM-BPNN的民航潜在高价值旅客预测
-
作者:
徐涛
刘泽君
卢敏
来源:
计算机应用与软件
年份:
2019
文献类型 :
期刊
关键词:
BPNN
特征提取
分类预测模型
民航潜在高价值旅客
RBM
-
描述:
目前常用潜在客户发现方法多为基于统计特征的行为分析方法,这种方法对所提取的特征具有很强的依赖性并且容易受到人为主观性影响。针对这一问题,结合受限玻尔兹曼机(Restricted Boltzmann Machine, RBM)与BP神经网络(Back Propagation Neural Network, BPNN),提出基于RBM-BPNN的民航潜在高价值旅客发现方法。设置民航旅客类别标签;利用RBM自动提取旅客行为特征;利用BPNN对旅客未来价值类型进行分类预测,从而发现民航潜在高价值旅客。实验结果表明,相对于基于统计特征的行为分析方法,该方法具有更高的分类预测准确率和民航潜在高价值旅客预测效果。
-
基于奇异值分解的航空发动机转子碰摩故障特征提取方法
-
作者:
张永强
易亮
来源:
应用力学学报
年份:
2019
文献类型 :
期刊
关键词:
特征提取
航空发动机
奇异值分解
转子碰摩
降噪
-
描述:
进行了特征提取,实现了转子系统的碰摩故障特征信号的提取。实际结果表明,该方法能够有效地诊断转子系统碰摩故障及提取相应的故障特征信号。
-
多源数据融合的民航发动机修后性能预测
-
作者:
谭治学
钟诗胜
林琳
来源:
北京航空航天大学学报
年份:
2019
文献类型 :
期刊
关键词:
特征提取
航空发动机
多源数据融合
发动机维修决策
修后性能预测
-
描述:
针对民航发动机修后排气温度裕度预测过程中的多源异构数据融合问题,提出了卷积自编码器与极端梯度提升模型结合的方法。利用所提出的条件熵增长因子规整发动机修前多元传感器参数序列中的参数排序,采用卷积自编码器提取规整后的参数序列和维修工作范围的数据特征,并将其与发动机使用时间信息组成合成特征以训练极端梯度提升模型,从而预测发动机修后性能并评估各影响因素的重要程度。经发动机机队维修案例验证,所提方法预测精度高于单维参数序列预测方法,对发动机修后排气温度的平均相对预测误差不高于8. 3%。