关键词
基于深度学习的航空发动机附件机匣故障诊断研究
作者: 柳秀.   来源: 哈尔滨理工大学 年份: 2023 文献类型 : 学位论文 关键词: 集成学习   元学习   故障诊断   深度学习   联邦学习  
描述: 基于深度学习的航空发动机附件机匣故障诊断研究
基于深度学习的航空航天领域专利文本分类研究
作者: 郑含笑.   来源: 郑州航空工业管理学院 年份: 2023 文献类型 : 学位论文 关键词: 深度学习   航空航天   专利文本分类   BERT   CNN模型  
描述: 基于深度学习的航空航天领域专利文本分类研究
航空器尾涡快速识别与预测研究
作者: 冷元飞.   来源: 中国民用航空飞行学院 年份: 2023 文献类型 : 学位论文 关键词: 激光雷达   尾涡识别   尾涡预测   深度学习   尾涡探测  
描述: 航空器尾涡快速识别与预测研究
深度注意力网络驱动的航空轴承健康状态识别研究
作者: 王兴.   来源: 长安大学 年份: 2023 文献类型 : 学位论文 关键词: 注意力机制   航空轴承   卷积神经网络   深度学习   状态识别  
描述: 深度注意力网络驱动的航空轴承健康状态识别研究
基于增强现实的智能虚拟民航发动机维修手册与工卡技术研究
作者: 吴梓祺.   来源: 中国民用航空飞行学院 年份: 2023 文献类型 : 学位论文 关键词: HoloLens2   声纹识别   增强现实   深度学习   民用航空发动机维修  
描述: 基于增强现实的智能虚拟民航发动机维修手册与工卡技术研究
基于深度学习的航空发动机附件机匣故障诊断研究
作者: 柳秀.   来源: 哈尔滨理工大学 年份: 2023 文献类型 : 学位论文 关键词: 集成学习   元学习   故障诊断   深度学习   联邦学习  
描述: 基于深度学习的航空发动机附件机匣故障诊断研究
民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅱ:地面综合诊断、寿命管理和智能维护维修决策
作者: 曹明   王鹏   左洪福   曾海军   孙见忠   杨卫东   魏芳   陈雪峰   来源: 航空学报 年份: 2023 文献类型 : 期刊 关键词: 故障融合决策   数字孪生   航空发动机健康管理系统   深度学习   智能视情维护维修   知识图谱   寿命管理  
描述: 基于民用航空发动机健康管理(EHM)的需求及发展目标,从CBM+全流程的角度分析民用航空发动机健康管理系统应用现状及行业发展趋势,进而总结民用航空发动机健康管理的应用现状及差距、挑战,并指出未来国内需要重点关注的民用发动机EHM研发方向。针对各个EHM功能模块的需求、差距、解决方案进行了深入论证分析,重点讨论了民用发动机EHM“下游”3个模块:地面综合诊断、寿命管理和智能视情维护维修决策的需求、必要性、现状及未来发展趋势和热点技术。
基于深度学习的航空发动机涡轮叶片自动射线检测技术研究
作者: 王栋欢   肖洪   吴丁毅   来源: 推进技术 年份: 2023 文献类型 : 期刊 关键词: 航空发动机   涡轮叶片   射线图像   深度学习   射线检测   缺陷检测  
描述: 一直以来,航空发动机涡轮叶片的射线检测依靠检验员人工评片。为避免经验差异、眼睛疲劳、标准理解等人为因素影响,有效改善传统射线检测费时费力、效率低下等问题,针对航空发动机涡轮叶片射线图像,基于YOLOv4模型提出了一种双主干特征融合的缺陷自动检测算法(DBFF-YOLOv4);通过设计包含所有特征映射的新型连接结构搭建缺陷检测颈部网络,建立了适用于涡轮叶片射线图像的缺陷自动检测模型;针对每个缺陷,采用9次裁剪、旋转和亮度增减的图像数据增强方法扩充样本数据,在此基础上进行了模型训练与测试。结果表明,针对完整涡轮叶片,建立的缺陷检测模型在0.5的置信度阈值下可获得96.7%的平均查准率和91.87%的平均查全率,优于通用目标检测算法YOLOv4模型。9次缺陷裁剪、旋转和亮度增减的图像数据增强方法能够显著提高模型的缺陷检测精度(平均精度分别得到了59.19%和2.53%的提升)。该研究为涡轮叶片自动射线检测提供了一种新方法。
不确定环境下的航空发动机装配线适应性调度方法
作者: 王怡琳   刘鹃   乔非   张家谔   来源: 控制与决策 年份: 2023 文献类型 : 期刊 关键词: 调度规则   航空发动机装配   适应性调度   深度学习   扰动识别   门控循环神经网络  
描述: 航空发动机装配是航空发动机制造过程的关键环节,其工序多,流程复杂,生产过程中扰动频发,如装配时间波动、不合格返工等。针对不确定环境下的航空发动机装配线的调度问题,本文提出一种基于门控循环神经网络(Gate Recurrent Unit, GRU)的适应性调度方法。该调度方法包含扰动识别和调度规则调整两个部分。扰动识别模块以滑动时间窗口为周期,利用GRU神经网络进行渐进型扰动的识别;调度规则调整模块以扰动识别的结果为触发,通过构建基于GRU神经网络的调度规则决策模型,输出适配当前生产状态的新的调度规则,用以指导生成更新的调度方案。最后,以某航空发动机装配线为研究案例,对本文提出的适应性调度方法进行验证分析,对比实验结果表明,本方法能够有效提升装配线的设备利用率、日均生产率等性能.
基于SW/YOLO模型的航空发动机叶片损伤实时检测
作者: 何宇豪   曹学国   刘信良   蒋浩坤   王静秋   来源: 推进技术 年份: 2023 文献类型 : 期刊 关键词: 航空发动机   实时检测   叶片损伤   深度学习   目标检测   孔探检测  
描述: 孔探检测技术是航空发动机叶片损伤检测的主要手段,但目前依赖人工操作,耗时耗力。本文提出了一个孔探视频检测的SW/YOLO模型,该模型包括输入端、主干网络、颈部网络、头部网络4个模块。首先,在主干网络加入了空间通道注意力模块(Spatial Channel / Convolutional Block Attention Module,SC/CBAM),有效避免位置信息丢失,提高目标边界回归能力,相较于YOLOv5,其平均精度均值mAP@0.5提高了5.4%。其次,在颈部网络对特征金字塔网络(Feature Pyramid Network,FPN)进行了改进,通过融合低层特征,扩大了模型感受野,有利于较小损伤区域的检测,如烧蚀损伤,平均精度提高了8.1%。最后,通过与YOLOv5,Faster R/CNN,SSD模型的对比实验,结果表明SW/YOLO模型的平均精度均值分别提高了7%,6.2%,6.3%,检测速度满足实时检测需求,有利于提高航空发动机孔探检测的自动化和智能化水平。
< 1 2 3 ... 10 11 12 13 14
Rss订阅