首页>
根据【关键词:激光雷达,尾涡识别,尾涡预测,深度学习,尾涡探测】搜索到相关结果 232 条
-
时间域航空电磁激发极化参数三维反演研究
-
作者:
满开峰
殷长春
刘云鹤
孙思源
熊彬
来源:
地球物理学报
年份:
2023
文献类型 :
期刊
关键词:
Pearson相关约束
激发极化效应
时间域航空电磁
深度学习
3D反演
-
描述:
Pearson相关性约束和深度学习算法相结合的时间域航空电磁激发极化参数反演策略.该反演策略首先基于深度学习预测时间域航空电磁激电参数,进而给时间常数和频率相关系数一个较小的约束范围后再反演电阻率和极化率,由此
-
基于编解码网络的航空影像像素级建筑物提取
-
作者:
陈凯强
高鑫
闫梦龙
张跃
孙显
来源:
遥感学报
年份:
2021
文献类型 :
期刊
关键词:
卷积神经网络
建筑物提取
深度学习
遥感
航空影像
-
描述:
建筑物提取在城市规划等土地利用分析中发挥着重要作用。用于提取建筑物的传统方法通常基于手工特征和分类器,导致精度较低。本文基于编解码结构的卷积神经网络CNN (Convolutional Neural Networks),自主学习多级的和具有区分度的特征来更好地辨识建筑物和背景,实现航空影像中的像素级建筑物提取。该网络由编码子网络和解码子网络两部分组成,编码子网络对输入图像进行空间分辨率压缩,完成特征提取;解码子网络从特征中提升空间分辨率,完成像素级的建筑物提取。此外,本文使用视野增强FoVE (Field-of-View Enhancement)方法减轻边缘现象(切片边缘附近的建筑物提取精度通常低于中心区域附近的精度)的影响,并分别在两个建筑物提取标准数据集上的实验表明,编解码卷积神经网络能有效实现像素级建筑物提取,FoVE能有效提高建筑物提取准确率;通过改变预测时切片大小和重叠度,分析其对建筑物提取结果的影响,揭示了FoVE的饱和性。
-
基于编解码网络的航空影像像素级建筑物提取
-
作者:
陈凯强
高鑫
闫梦龙
张跃
孙显
来源:
遥感学报
年份:
2021
文献类型 :
期刊
关键词:
卷积神经网络
建筑物提取
深度学习
遥感
航空影像
-
描述:
建筑物提取在城市规划等土地利用分析中发挥着重要作用。用于提取建筑物的传统方法通常基于手工特征和分类器,导致精度较低。本文基于编解码结构的卷积神经网络CNN (Convolutional Neural Networks),自主学习多级的和具有区分度的特征来更好地辨识建筑物和背景,实现航空影像中的像素级建筑物提取。该网络由编码子网络和解码子网络两部分组成,编码子网络对输入图像进行空间分辨率压缩,完成特征提取;解码子网络从特征中提升空间分辨率,完成像素级的建筑物提取。此外,本文使用视野增强FoVE (Field-of-View Enhancement)方法减轻边缘现象(切片边缘附近的建筑物提取精度通常低于中心区域附近的精度)的影响,并分别在两个建筑物提取标准数据集上的实验表明,编解码卷积神经网络能有效实现像素级建筑物提取,FoVE能有效提高建筑物提取准确率;通过改变预测时切片大小和重叠度,分析其对建筑物提取结果的影响,揭示了FoVE的饱和性。
-
一种用于预测航空遥感影像光谱信息的深度学习方法
-
作者:
郝明达
普运伟
周家厚
杨洋
陈如俊
来源:
遥感信息
年份:
2022
文献类型 :
期刊
关键词:
高光谱遥感重建
深度学习
密集卷积神经网络
光谱超分辨率
自适应注意力机制
-
描述:
为从航空RGB遥感影像中预测高光谱影像中有用的地物属性信息,提高航空RGB遥感影像光谱的分辨率,提出一种轻量型的深度学习网络模型。所提模型组合了密集卷积神经网络架构和自适应注意力机制的优点,构建
-
基于深度学习的航空发动机齿轮故障诊断
-
作者:
万安平
杨洁
王景霖
陈挺
缪徐
黄佳湧
杜翔
来源:
振动.测试与诊断
年份:
2022
文献类型 :
期刊
关键词:
航空发动机
卷积神经网络
多传感器信息融合
故障诊断
深度学习
-
描述:
dimensional convolutional neural network,简称1D-CNN)对试验获取的某航空发动机的齿轮故障振动数据进行特征提取与分类,建立齿轮故障一维卷积神经网络模型,对航空发动机轴承进行
-
通用航空飞行员异常行为检测及预警系统设计与实现
-
作者:
陈农田
满永政
袁浩
董俊杰
宁威峰
李俊辉
来源:
实验室研究与探索
年份:
2022
文献类型 :
期刊
关键词:
检测预警
深度学习
改进YOLOv3
图像视频采集
驾驶异常行为
-
描述:
捕获,结合改进的YOLOv3深度学习算法开展飞行员异常行为识别检测并建立声音和灯光告警触发机制,实现飞行员异常行为检测预警可视化。通过树莓派将预警信息上传云端,同步实现图像和视频数据实时存储及可追溯性
-
基于深度学习的航空发动机滑油磨粒检测研究
-
作者:
侯媛媛
李江红
薛军印
来源:
计算机测量与控制
年份:
2022
文献类型 :
期刊
关键词:
航空发动机
YOLOv3模型
滑油磨粒检测
深度学习
SER算法
-
描述:
针对滑油中磨粒形状复杂且尺寸大小不一,传统滑油磨粒检测方法存在时效性差、检测尺度小、精度低、非铁磁性磨粒不能检测等缺点;设计了一种基于深度学习的航空发动机滑油磨粒检测方法;基于连续流微流控芯片的滑油
-
航空发动机外形点云的特征分割方法
-
作者:
闫杰琼
周来水
胡少乾
文思扬
来源:
光学学报
年份:
2022
文献类型 :
期刊
关键词:
航空发动机
机器视觉
外形点云
深度学习
特征分割
-
描述:
提出了迫切需求。为了使重建出的发动机外形几何模型尽可能地保留准确的结构特征,提出了一种基于深度学习的航空发动机外形点云特征分割方法,该方法将整体点云分割成特征数据与非特征数据,这有利于后续采用不同的方法
-
基于二次分解重构策略的航空客流需求预测
-
作者:
栗慧琳
李洪涛
李智
来源:
计算机应用
年份:
2022
文献类型 :
期刊
关键词:
二次分解重构
多步预测
深度学习
航空客流需求预测
模型匹配
-
描述:
、深圳宝安国际机场和海口美兰国际机场的航空客流数据作为研究对象进行了1步和多步预测实验,实验结果表明,与一次分解集成模型STL-SAAB相比,所提模型的均方根误差(RMSE)提升了1
-
航空遥感影像中的轻量级小目标检测
-
作者:
薛雅丽
孙瑜
马瀚融
来源:
电光与控制
年份:
2022
文献类型 :
期刊
关键词:
小目标
遥感图像
特征融合
深度学习
目标检测
-
描述:
单阶段目标检测算法凭借结构简单、模型高效等特点获得很多研究者及工业界的关注。以现有的YOLO算法为基础,针对遥感图像中目标尺寸小、排列紧密等困难,提出一种提升复杂背景下小目标检测精度的轻量级目标检测方法。该方法引入加权融合特征网络,为每层特征图赋予可在训练中不断学习的权重系数,加强深浅层特征融合。通过引入CIoU损失及模型改进,加快网络收敛速度,使其满足实时性需求。在基于DOTA构建的遥感图像小目标数据集上进行对比实验,结果表明,该方法具有更好的检测精度与检测速度。
<
1
2
3
...
13
14
15
...
22
23
24
>