首页>
根据【关键词:深度注意力机制,软阈值化,深度残差收缩网络,深度学习,故障风险预警 】搜索到相关结果 203 条
基于RDK-ELM的航空发动机控制系统故障诊断
作者:
陈虹潞
黄向华
来源:
航空发动机
年份:
2021
文献类型 :
期刊
关键词:
航空发动机
极限学习机
控制系统
简约改进
故障诊断
深度学习
描述:
为保持较高诊断正确率,缩短训练时间,满足航空发动机故障诊断对于实时性和高诊断率的需求,提出1 种对深度核极限学习机的简约改进方法。输入数据中随机选取部分数据作为支持向量,结合深度学习 网络的多层结构
稀疏驱动的航空发动机主轴承智能监测研究(英文)
作者:
丁宝庆
武靖耀
孙闯
王诗彬
陈雪峰
李应红
来源:
Transactions of Nanjing University of Aeronautics and Astronautics
年份:
2021
文献类型 :
期刊
关键词:
特征提取
稀疏模型
变分自编码
智能监测
深度学习
航空发动机主轴承
描述:
微弱特征提取是航空发动机健康监测与智能诊断的关键技术之一。本文针对航空发动机主轴承微弱故障智能监测难题,基于信号先验提出增强稀疏驱动的智能监测方法。通过分析经典凸稀疏诊断模型难以兼顾信号降噪与特征重构性能的缺陷,构建基于莫罗包络理论的非凸正则凸优化增强稀疏模型,以实现微弱特征提取;进而提出稀疏驱动的深度卷积变分自编码网络智能监测方法,通过对健康状态稀疏降噪样本的训练实现对故障异常状态的智能识别。通过航空发动机主轴承疲劳寿命试验的工程案例对提出方法进行性能验证,结果表明:增强稀疏驱动的智能监测方法具有良好的异常状态智能识别能力,能够有效支撑航空发动主轴承微弱故障的智能监测与诊断。
稀疏驱动的航空发动机主轴承智能监测研究(英文)
作者:
丁宝庆
武靖耀
孙闯
王诗彬
陈雪峰
李应红
来源:
Transactions of Nanjing University of Aeronautics and Astronautics
年份:
2021
文献类型 :
期刊
关键词:
特征提取
稀疏模型
变分自编码
智能监测
深度学习
航空发动机主轴承
描述:
微弱特征提取是航空发动机健康监测与智能诊断的关键技术之一。本文针对航空发动机主轴承微弱故障智能监测难题,基于信号先验提出增强稀疏驱动的智能监测方法。通过分析经典凸稀疏诊断模型难以兼顾信号降噪与特征重构性能的缺陷,构建基于莫罗包络理论的非凸正则凸优化增强稀疏模型,以实现微弱特征提取;进而提出稀疏驱动的深度卷积变分自编码网络智能监测方法,通过对健康状态稀疏降噪样本的训练实现对故障异常状态的智能识别。通过航空发动机主轴承疲劳寿命试验的工程案例对提出方法进行性能验证,结果表明:增强稀疏驱动的智能监测方法具有良好的异常状态智能识别能力,能够有效支撑航空发动主轴承微弱故障的智能监测与诊断。
基于深度学习 的光学遥感图像飞机检测算法
作者:
董永峰
仉长涛
汪鹏
冯哲
来源:
激光与光电子学进展
年份:
2021
文献类型 :
期刊
关键词:
遥感图像
卷积神经网络
图像处理
目标检测
深度学习
Mask
RCNN算法
描述:
光学遥感图像目标检测一直都是遥感领域研究的热点之一,但现有的检测方法对背景复杂且尺寸较小的目标检测准确率不高。针对以上问题,提出了一种以Mask-RCNN为基础框架的目标检测方法。该算法以ResNet50为特征提取网络并在此基础之上利用特征重用技术来更好地提取目标的语义特征,且针对不同类型的飞机尺寸比例不固定等特点,设计了一组更加合适的候选框尺度集合。实验结果证明,该方法与以往常用的检测算法相比在小物体检测上拥有更高的检测精度。
基于残差网络的航空发动机滚动轴承故障多任务诊断方法
作者:
康玉祥
陈果
尉询楷
潘文平
王浩
来源:
振动与冲击
年份:
2022
文献类型 :
期刊
关键词:
滚动轴承
故障诊断
深度学习
多任务
残差网络
损伤大小
描述:
针对当前基于深度学习 的航空发动机滚动轴承故障诊断技术诊断任务单一的问题,提出一种基于多任务残差网络的滚动轴承故障诊断方法,该方法采用残差网络为深层特征提取与共享主框架,建立能够同时进行故障诊断
基于卷积LSTM模型的航空器轨迹预测
作者:
刘龙庚
翟俐民
韩云祥
来源:
计算机工程与设计
年份:
2022
文献类型 :
期刊
关键词:
长短期记忆网络
时间序列
空管大数据
航迹聚类
深度学习
智能交通
航迹预测
描述:
采集空管大数据,根据空管大数据的特点,对数据进行数据融合,利用改进的聚类算法处理航迹数据,对得到的各类航迹数据分别构建模型,提高模型的预测精度。分别构建Stack LSTM和基于卷积LSTM的航空器轨迹预测模型,以真实雷达数据为例进行仿真实验,对仿真结果进行对比,其结果表明,基于卷积LSTM的航空器轨迹预测模型可以将预测的均方根误差控制在400s内,验证了预测模型可以实现航空器轨迹的精确预测。
民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅱ:地面综合诊断、寿命管理和智能维护维修决策
作者:
曹明
王鹏
左洪福
曾海军
孙见忠
杨卫东
魏芳
陈雪峰
来源:
航空学报
年份:
2023
文献类型 :
期刊
关键词:
故障融合决策
数字孪生
航空发动机健康管理系统
深度学习
智能视情维护维修
知识图谱
寿命管理
描述:
基于民用航空发动机健康管理(EHM)的需求及发展目标,从CBM+全流程的角度分析民用航空发动机健康管理系统应用现状及行业发展趋势,进而总结民用航空发动机健康管理的应用现状及差距、挑战,并指出未来国内需要重点关注的民用发动机EHM研发方向。针对各个EHM功能模块的需求、差距、解决方案进行了深入论证分析,重点讨论了民用发动机EHM“下游”3个模块:地面综合诊断、寿命管理和智能视情维护维修决策的需求、必要性、现状及未来发展趋势和热点技术。
基于深度学习 的航空发动机涡轮叶片自动射线检测技术研究
作者:
王栋欢
肖洪
吴丁毅
来源:
推进技术
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
涡轮叶片
射线图像
深度学习
射线检测
缺陷检测
描述:
,采用9次裁剪、旋转和亮度增减的图像数据增强方法扩充样本数据,在此基础上进行了模型训练与测试。结果表明,针对完整涡轮叶片,建立的缺陷检测模型在0.5的置信度阈值下可获得96.7%的平均查准率和91
不确定环境下的航空发动机装配线适应性调度方法
作者:
王怡琳
刘鹃
乔非
张家谔
来源:
控制与决策
年份:
2023
文献类型 :
期刊
关键词:
调度规则
航空发动机装配
适应性调度
深度学习
扰动识别
门控循环神经网络
描述:
航空发动机装配是航空发动机制造过程的关键环节,其工序多,流程复杂,生产过程中扰动频发,如装配时间波动、不合格返工等。针对不确定环境下的航空发动机装配线的调度问题,本文提出一种基于门控循环神经网络(Gate Recurrent Unit, GRU)的适应性调度方法。该调度方法包含扰动识别和调度规则调整两个部分。扰动识别模块以滑动时间窗口为周期,利用GRU神经网络进行渐进型扰动的识别;调度规则调整模块以扰动识别的结果为触发,通过构建基于GRU神经网络的调度规则决策模型,输出适配当前生产状态的新的调度规则,用以指导生成更新的调度方案。最后,以某航空发动机装配线为研究案例,对本文提出的适应性调度方法进行验证分析,对比实验结果表明,本方法能够有效提升装配线的设备利用率、日均生产率等性能.
基于深度学习 的光学遥感图像飞机检测算法
作者:
董永峰
仉长涛
汪鹏
冯哲
来源:
激光与光电子学进展
年份:
2021
文献类型 :
期刊
关键词:
遥感图像
卷积神经网络
图像处理
目标检测
深度学习
Mask
RCNN算法
描述:
光学遥感图像目标检测一直都是遥感领域研究的热点之一,但现有的检测方法对背景复杂且尺寸较小的目标检测准确率不高。针对以上问题,提出了一种以Mask-RCNN为基础框架的目标检测方法。该算法以ResNet50为特征提取网络并在此基础之上利用特征重用技术来更好地提取目标的语义特征,且针对不同类型的飞机尺寸比例不固定等特点,设计了一组更加合适的候选框尺度集合。实验结果证明,该方法与以往常用的检测算法相比在小物体检测上拥有更高的检测精度。