关键词
基于CNN-Seq2Seq的航空发动机喘振诊断模型的研究
作者: 姚艳玲   袁化成   陆超   唐晓澜   黄爱华   来源: 测控技术 年份: 2022 文献类型 : 期刊 关键词: 序列到序列   卷积神经网络   故障诊断   发动机喘振  
描述: 和价值。当前针对航空发动机喘振故障诊断的模型存在诊断时间长、诊断准确率不高的特点。为了解决这些问题,在序列到序列(Seq2Seq)模型的基础上,使用卷积神经网络(CNN)代替Seq2Seq中编码器
基于CNN-Seq2Seq的航空发动机喘振诊断模型的研究
作者: 姚艳玲   袁化成   陆超   唐晓澜   黄爱华   来源: 测控技术 年份: 2022 文献类型 : 期刊 关键词: 序列到序列   卷积神经网络   故障诊断   发动机喘振  
描述: 和价值。当前针对航空发动机喘振故障诊断的模型存在诊断时间长、诊断准确率不高的特点。为了解决这些问题,在序列到序列(Seq2Seq)模型的基础上,使用卷积神经网络(CNN)代替Seq2Seq中编码器
基于CNN-Seq2Seq的航空发动机喘振诊断模型的研究
作者: 姚艳玲   袁化成   陆超   唐晓澜   黄爱华   来源: 测控技术 年份: 2022 文献类型 : 期刊 关键词: 序列到序列   卷积神经网络   故障诊断   发动机喘振  
描述: 和价值。当前针对航空发动机喘振故障诊断的模型存在诊断时间长、诊断准确率不高的特点。为了解决这些问题,在序列到序列(Seq2Seq)模型的基础上,使用卷积神经网络(CNN)代替Seq2Seq中编码器
基于CNN-Seq2Seq的航空发动机喘振诊断模型的研究
作者: 姚艳玲   袁化成   陆超   唐晓澜   黄爱华   来源: 测控技术 年份: 2022 文献类型 : 期刊 关键词: 序列到序列   卷积神经网络   故障诊断   发动机喘振  
描述: 和价值。当前针对航空发动机喘振故障诊断的模型存在诊断时间长、诊断准确率不高的特点。为了解决这些问题,在序列到序列(Seq2Seq)模型的基础上,使用卷积神经网络(CNN)代替Seq2Seq中编码器
基于改进候选区域网络的红外飞机检测
作者: 姜晓伟   王春平   付强   来源: 激光与红外 年份: 2019 文献类型 : 期刊 关键词: 聚类   红外飞机   卷积神经网络   目标检测  
描述: 为较好地解决防空武器成像系统对空中红外飞机的检测问题。首先简要地概括了卷积神经网络的兴起和应用,其次在引入基于深度学习的目标检测模型Faster R-CNN的基础上,详细地介绍了经典K-means
基于改进候选区域网络的红外飞机检测
作者: 姜晓伟   王春平   付强   来源: 激光与红外 年份: 2019 文献类型 : 期刊 关键词: 聚类   红外飞机   卷积神经网络   目标检测  
描述: 为较好地解决防空武器成像系统对空中红外飞机的检测问题。首先简要地概括了卷积神经网络的兴起和应用,其次在引入基于深度学习的目标检测模型Faster R-CNN的基础上,详细地介绍了经典K-means
基于维修日志的飞机设备故障原因判别方法
作者: 王锐光   吴际   刘超   杨海燕   来源: 软件学报 年份: 2019 文献类型 : 期刊 关键词: 维修日志   卷积神经网络   故障诊断   随机森林  
描述: 的故障诊断基本过程;其次,在传统的文本特征提取技术的基础上,基于领域内信息,提出一种基于卷积神经网络(convolution neural network,简称CNN)的小样本文本特征提取方法,在样本量较少
基于维修日志的飞机设备故障原因判别方法
作者: 王锐光   吴际   刘超   杨海燕   来源: 软件学报 年份: 2019 文献类型 : 期刊 关键词: 维修日志   卷积神经网络   故障诊断   随机森林  
描述: 的故障诊断基本过程;其次,在传统的文本特征提取技术的基础上,基于领域内信息,提出一种基于卷积神经网络(convolution neural network,简称CNN)的小样本文本特征提取方法,在样本量较少
基于卷积神经网络迁移学习的飞机目标识别
作者: 杨予昊   孙晶明   虞盛康   来源: 现代雷达 年份: 2020 文献类型 : 期刊 关键词: 小样本   卷积神经网络   飞机目标识别   迁移学习  
描述: 基于卷积神经网络迁移学习的飞机目标识别
基于卷积神经网络的航空影像城市建筑物分割
作者: 刘蝶   来源: 地理空间信息 年份: 2020 文献类型 : 期刊 关键词: 建筑物   卷积神经网络   DenseNets   上采样  
描述: 对航空影像城市建筑物的分割方法进行了研究。基于DenseNets的密集连接结构,结合池化下采样和反卷积上采样方法,提出了一种新的图像语义分割方法。实验结果表明,新方法在模型参数大小、训练时间和平均交并比方面均优于Unet。预测图像更直观地体现了新方法的优势,城市建筑物分割得较为完整。
< 1 2 3 ... 12 13 14 ... 37 38 39
Rss订阅