关键词
基于GRU模型的高机动试飞航空器轨迹预测方法研究
作者: 张会英   彭曼   杨地   来源: 长江信息通信 年份: 2022 文献类型 : 期刊 关键词: 注意力机制   轨迹预测   防相撞   门控循环神经网络  
描述: 文章利用注意力机制提取试飞运动轨迹数据中的有效信息,采用门控循环神经网络(Gated Recurrent Neural Network,GRU)模型处理时序问题,提出了一种高机动试飞航空器实时多步轨迹预测方法。在结合注意力机制和门控循环神经网络进行航迹预测的基础上,根据轨迹预测结果进行高机动试飞航空器防相撞检测,提高试飞过程中航空器飞行轨迹的可预测性,减少地面管制员的工作量,在保障试飞安全的前提下,进一步提高科研试飞效率。
一种用于航空发动机RUL预测的推理网络模型
作者: 韩光洁   史国华   缑林峰   徐甜甜   林川   来源: 小型微型计算机系统 年份: 2022 文献类型 : 期刊 关键词: 注意力机制   LSTM网络   航空发动机   寿命预测  
描述: 剩余使用寿命预测对于航空发动机的故障预测和健康管理至关重要.为解决传统长短期记忆网络只利用最后一步学习到的特征进行回归的问题,本文提出了一种基于注意力机制的航空发动机剩余使用寿命预测模型.利用长短期记忆网络处理航空发动机的时序数据,自动提取与时间有关的特征,采用注意力机制为不同传感器特征和不同的时间步进行了加权.此外,本文还考虑到了不同操作条件对发动机剩余使用寿命的影响,将自动提取的特征与操作条件进行了特征融合.实验结果表明,本文提出的模型能有效预测航空发动机的剩余使用寿命,为基于状态的维护提供了可靠的支持.
一种用于航空发动机RUL预测的推理网络模型
作者: 韩光洁   史国华   缑林峰   徐甜甜   林川   来源: 小型微型计算机系统 年份: 2022 文献类型 : 期刊 关键词: 注意力机制   LSTM网络   航空发动机   寿命预测  
描述: 剩余使用寿命预测对于航空发动机的故障预测和健康管理至关重要.为解决传统长短期记忆网络只利用最后一步学习到的特征进行回归的问题,本文提出了一种基于注意力机制的航空发动机剩余使用寿命预测模型.利用长短期记忆网络处理航空发动机的时序数据,自动提取与时间有关的特征,采用注意力机制为不同传感器特征和不同的时间步进行了加权.此外,本文还考虑到了不同操作条件对发动机剩余使用寿命的影响,将自动提取的特征与操作条件进行了特征融合.实验结果表明,本文提出的模型能有效预测航空发动机的剩余使用寿命,为基于状态的维护提供了可靠的支持.
基于注意力机制的航空图像旋转框目标检测
作者: 常洪彬   李文举   李文辉   来源: 吉林大学学报(理学版) 年份: 2022 文献类型 : 期刊 关键词: 航空图像   注意力机制   目标检测   深度学习  
描述: 针对在航空遥感图像目标检测中,航空图像在俯视图下呈任意方向排列,存在图像尺寸大、方向任意和背景复杂等问题,为能在复杂背景的航空图像中仍有较好的检测结果,提出一种基于注意力机制的旋转框航空图像目标检测模型.该模型首先采用RetinaNet作为基线模型,在原有检测器结构的基础上,增加额外的角度参数以适应旋转框目标检测;然后提出一个新的通道语义提取注意力模块(CSE),用于捕获全局语义信息和通道关系,并预测粗糙包围盒与分类分数;最后采用特征对齐和改进的Fast R-CNN检测头进行精细化处理,进一步提升检测精度,得到最后的分类和回归结果.实验结果表明,该方法在公开航空遥感数据集DOTA上的检测精度达到77.71%,优于其他先进的旋转框目标检测方法.
一种基于TCN-LGBM的航空发动机气路故障诊断方法
作者: 吕卫民   孙晨峰   任立坤   赵杰   李永强   来源: 兵工学报 年份: 2023 文献类型 : 期刊 关键词: 轻量级梯度提升机   注意力机制   航空发动机   故障诊断   时间卷积神经网络  
描述: 长时间工作在高温高压、强振动等恶劣气路环境下的航空发动机经常面临部件疲劳、腐蚀和性能退化的问题,且其故障诊断时序逻辑性不强、故障参数耦合较深等特点十分明显,为此提出一种基于时间卷积神经网络(TCN)和轻量级梯度提升机(LGBM)的航空发动机气路故障诊断方法。故障诊断分为故障特征提取和分类诊断两个过程:引入TCN框架在保证故障数据训练时序逻辑的基础上,实现对远层历史信息和当前层信息的特征融合构建,融合通道注意力机制增强了高质量特征的权重;基于LGBM模型实现对特征的快速分类,利用贝叶斯方法实现对模型超参数的快速优化。以基于PROOSIS软件建模的某军用小涵道比涡扇发动机故障仿真数据为例,对6种故障模式进行诊断识别。研究结果表明:仿真结果说明了所提方法的有效性;通过与其他模型对比体现了该方法的优越性。
基于Trans/Attention的飞行区航空器监视数据融合方法
作者: 王兴隆   尹昊   丁俊峰   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 场面监视雷达   注意力机制   Transformer   数据融合   广播式自动相关监视  
描述: 针对飞行区航空器单一监视源存在监视精度低、位置跳变的问题,提出了一种基于Transformer和注意力机制的航空器监视数据融合方法。首先利用Transformer的编码器结构分别对各监视源数据进行特征提取,然后通过注意力机制对不同监视源赋予权重值,最后经过全连接网络进行回归计算,以获得最终的融合结果。选取场面监视雷达和广播式自动相关监视系统的监视数据作为融合源,多点定位数据作为真实标签,实验结果表明,该方法有效降低了单一监视源的监视误差,且融合效果优于基于注意力机制的长短期记忆网络、循环神经网络和扩展卡尔曼滤波融合方法,平均绝对误差分别提升了2.20%、14.32%和33.94%。
基于改进YOLOv5的航空发动机表面缺陷检测模型
作者: 李鑫   李香蓉   汪诚   李秋良   李卓越   来源: 激光与光电子学进展 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   机器视觉   YOLOv5   表面缺陷检测  
描述: 针对目前航空发动机表面人工缺陷检测效率低的问题,本文提出了一种基于改进YOLOv5的缺陷检测模型YOLOv5-CE。首先在网络中融合数据增强策略搜索算法,自动为当前数据集搜索最佳的数据增强策略,实现训练效果的提升;其次在Backbone网络中引入坐标注意力机制,在通道注意力的基础上嵌入坐标信息,提高对小缺陷目标的检测能力;最后将YOLOv5的定位损失函数改进为EIoU loss,在加快模型收敛的同时提高预测框回归精度。实验表明,本文提出的YOLOv5-CE模型,相比原YOLOv5s网络,在检测速度几乎没有下降的情况下m AP值提高了1.2%,达到了98.5%,能够实现对航空发动机四种常见类型缺陷的高效智能检测。
融合注意力和多尺度特征的航空发动机缺陷检测
作者: 赵崇林   朱江   胡永进   李祖泽   王鹏举   谢涛   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   YOLOv5   深度学习   缺陷检测  
描述: 航空发动机的结构完整性关乎飞行安全。目前基于孔探技术的航空发动机缺陷检测以人工操作为主。为提高检测精度和效率,提出了一种融合注意力和多尺度特征的航空发动机缺陷智能检测算法,以辅助孔探工作。首先,针对原始孔探图像中缺陷样本的类别不平衡问题,采用了一种基于几何变换和泊松图像编辑的多样本融合数据增强方法,丰富小样本图像并构建缺陷数据集。然后,在基准网络YOLOv5中融入协调注意力模块(CA),以强调缺陷特征的提取,增强网络对缺陷目标和复杂背景的区分。在颈部网络中构建加权双向特征金字塔结构(BiFPN),以完成更高层次的特征融合,提升对多尺度目标的表达能力。最后,将边界框回归损失函数定义为EIOU损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
基于注意力金字塔网络的航空影像建筑物变化检测
作者: 田青林   秦凯   陈俊   李瑶   陈雪娇   来源: 光学学报 年份: 2021 文献类型 : 期刊 关键词: 注意力机制   图像处理   变化检测   空洞卷积   特征金字塔  
描述: 针对遥感图像语义分割中存在对多尺度目标的漏检和分割边界粗糙等问题,提出了一种基于注意力金字塔网络的航空影像建筑物变化检测方法。该方法采用编码-解码结构,在编码阶段使用ResNet101作为基础网络来提取特征,并在部分残差模块应用空洞卷积增大感受野,同时将金字塔池化结构作为编码网络的最后一层,以提取图像多尺度特征;在解码阶段的横向连接过程中引入注意力机制以突出重要特征,并采用自上而下的密集连接方式计算特征金字塔,有效融合不同阶段、不同分辨率的特征。在大型建筑物变化检测数据集上进行验证实验,实验结果表明所提方法在对不同尺寸建筑物目标的变化检测中展现出了良好的适应性,相比于经典语义分割网络具有一定的优势。
民航突发事件领域本体关系提取方法的研究
作者: 王红   李晗   李浩飞   来源: 计算机科学与探索 年份: 2020 文献类型 : 期刊 关键词: 注意力机制   关系抽取   领域本体   门控循环单元(GRU)模型   民航突发事件  
描述: 民航突发事件领域本体关系提取方法的研究
< 1 2
Rss订阅