首页>
根据【关键词:无参考模型,特征提取,卷积神经网络,特征融合,多模态数据,深度学习,网络结构,影像质量评价】搜索到相关结果 67 条
-
基于特征注意力机制的GRU-GAN航空发动机剩余寿命预测
-
作者:
袁烨
黄虹
程骋
虞文武
丁汉
来源:
中国科学:技术科学
年份:
2022
文献类型 :
期刊
关键词:
注意力机制
生成对抗网络
特征提取
航空航天
剩余寿命预测
-
描述:
涡扇发动机作为航空航天领域的核心设备之一,其健康状况决定了航空器能否稳定可靠地运行.涡扇发动机的剩余寿命预测是航天器设备监测与维护的重要一环.然而涡扇发动机的监测过程具有工况复杂、监测数据多样、时间跨度长等特点,针对其数据类型多且体量大、数据冗余度较高、剩余寿命预测精度较低等问题,本文通过将生成对抗网络(Generative adversarial network, GAN)的生成能力与门控循环单元(Gate recurrent unit, GRU)的预测能力相结合,提出一种基于特征注意力机制的GAN和GRU融合模型.为了对时序关系进行建模,首先利用特征注意力机制和GRU分别提取空间和时间上的相关性,然后将经过预训练的生成器附加到GRU之后得到整体模型.具体来说,本文采用预训练的GAN网络生成模块替代传统自编码器,解决了由自编码器参数过多引起的GRU模块训练不充分的问题,提升了时空相关特性的提取能力、提高了模型的泛化性能、提升了预测精度.本文利用CMAPSS涡扇发动机数据来验证模型效果,通过与不同机器学习方法进行对比,实验结果显示,该方法在均方根误差和指数型评价指标这两个评价指标上都有较高的预测精度.
-
基于航空交流故障电弧标准的电弧仿真研究
-
作者:
孟驰华
马娅娜
韦清瀚
杨昌
来源:
测控技术
年份:
2022
文献类型 :
期刊
关键词:
特征提取
特性分析
模型优化策略
电弧标准
航空交流故障电弧
-
描述:
随着飞机多电全电技术的迅猛发展,电力系统在飞机中的重要程度不断提升,而电弧故障是航空电力系统多发的一类电气故障,会引起飞机火灾,轻则烧毁线路,重则引起飞机坠毁。因此,航空交流故障电弧的研究对保障飞机电力系统的安全十分重要。针对传统航空交流故障电弧模型种类单一、难以准确模拟真实故障电弧的特点,基于航空交流故障电弧试验标准下点接触电极、点接触截断和松动接线柱试验中得到的故障电弧电压、电流特性进行分析后,提出模型改进方法,形成航空交流电弧仿真优化策略,从而涵盖所提航空交流电弧试验标准下的故障电弧特性。通过MATLAB/Simulink完成了电弧模型的搭建,对电弧数据及模型仿真结果进行特征量提取及比较,验证了航空交流故障电弧模型仿真策略和方法的有效性。
-
基于特征注意力机制的GRU-GAN航空发动机剩余寿命预测
-
作者:
袁烨
黄虹
程骋
虞文武
丁汉
来源:
中国科学:技术科学
年份:
2022
文献类型 :
期刊
关键词:
注意力机制
生成对抗网络
特征提取
航空航天
剩余寿命预测
-
描述:
涡扇发动机作为航空航天领域的核心设备之一,其健康状况决定了航空器能否稳定可靠地运行.涡扇发动机的剩余寿命预测是航天器设备监测与维护的重要一环.然而涡扇发动机的监测过程具有工况复杂、监测数据多样、时间跨度长等特点,针对其数据类型多且体量大、数据冗余度较高、剩余寿命预测精度较低等问题,本文通过将生成对抗网络(Generative adversarial network, GAN)的生成能力与门控循环单元(Gate recurrent unit, GRU)的预测能力相结合,提出一种基于特征注意力机制的GAN和GRU融合模型.为了对时序关系进行建模,首先利用特征注意力机制和GRU分别提取空间和时间上的相关性,然后将经过预训练的生成器附加到GRU之后得到整体模型.具体来说,本文采用预训练的GAN网络生成模块替代传统自编码器,解决了由自编码器参数过多引起的GRU模块训练不充分的问题,提升了时空相关特性的提取能力、提高了模型的泛化性能、提升了预测精度.本文利用CMAPSS涡扇发动机数据来验证模型效果,通过与不同机器学习方法进行对比,实验结果显示,该方法在均方根误差和指数型评价指标这两个评价指标上都有较高的预测精度.
-
航空发动机附件齿轮箱滚动轴承故障诊断方法研究
-
作者:
李业政
来源:
北京化工大学
年份:
2022
文献类型 :
学位论文
关键词:
航空发动机
特征提取
齿轮箱滚动轴承
故障诊断
变工况
-
描述:
航空发动机附件齿轮箱滚动轴承故障诊断方法研究
-
多尺度特征组合优化的航空液压管路故障诊断研究
-
作者:
薛政坤
来源:
辽宁科技大学
年份:
2022
文献类型 :
学位论文
关键词:
特征提取
振动分析
故障诊断
航空液压管路
信号处理
-
描述:
多尺度特征组合优化的航空液压管路故障诊断研究
-
基于CenterNet的航空遥感图像目标检测
-
作者:
杨曦中
高冠鸿
熊智
张玲
来源:
航空电子技术
年份:
2022
文献类型 :
期刊
关键词:
目标检测
深度学习
神经网络
CenterNet
-
描述:
为实现高精度的航空图像目标检测,将Anchor free的目标检测算法CenterNet应用到检测中,同时使用Resnet50主干网络,并引入CIoU损失替代原有损失函数对网络模型做出了改进。改进后的算法在RSOD与DIOR数据集上进行测试,结果显示在保证网络轻量化的前提下检测精度有明显的提高,证明了算法在航空目标检测方面的可行性与准确性。
-
基于深度学习的航空器场面轨迹预测
-
作者:
李雪
何元清
胡耀
来源:
现代计算机
年份:
2022
文献类型 :
期刊
关键词:
长短期记忆网络
深度学习
轨迹预测
-
描述:
轨迹预测研究是安全高效控制场面滑行的重要基础,在路由规划,风险预警,航班次序,重要节点的时间安排等都能起到重要作用。利用深度学习中循环神经网络的长期记忆性特点,对航空器场面历史数据进行分析和预处理,设定网络模型参数,构建轨迹预测模型,提出了一种基于深度学习的航空器场面滑行轨迹预测方法。结合场面航空器运动状态的变化,改进长短期记忆网络的隐藏层结构,实现对航空器场面轨迹的中期预测。
-
通用航空训练飞行发动机数据异常检测初探
-
作者:
王翔
来源:
内燃机与配件
年份:
2022
文献类型 :
期刊
关键词:
深度学习
训练飞行
异常检测
-
描述:
大型运输机发动机的健康管理研究较为广泛,相对于运输航空,针对通用航空领域以训练飞行为主的小型教练机发动机的异常检测技术还不够成熟。训练飞行具有飞行模式固定,起降频次较高,信息数据结构简单的特点,更适合引入深度学习对其进行建模分析。本文归纳了当前主流的几种深度异常检测模型,从原理、计算复杂度和优缺点三个角度进行分析。为通用航空训练飞行的教练机发动机的异常检测研究提供可行的研究思路。
-
通用航空训练飞行发动机数据异常检测初探
-
作者:
王翔
来源:
内燃机与配件
年份:
2022
文献类型 :
期刊
关键词:
深度学习
训练飞行
异常检测
-
描述:
大型运输机发动机的健康管理研究较为广泛,相对于运输航空,针对通用航空领域以训练飞行为主的小型教练机发动机的异常检测技术还不够成熟。训练飞行具有飞行模式固定,起降频次较高,信息数据结构简单的特点,更适合引入深度学习对其进行建模分析。本文归纳了当前主流的几种深度异常检测模型,从原理、计算复杂度和优缺点三个角度进行分析。为通用航空训练飞行的教练机发动机的异常检测研究提供可行的研究思路。
-
基于Transformer的多特征融合的航空发动机剩余使用寿命预测
-
作者:
马依琳
陶慧玲
董启文
王晔
来源:
华东师范大学学报(自然科学版)
年份:
2022
文献类型 :
期刊
关键词:
航空发动机
Transformer
深度学习
剩余使用寿命
-
描述:
发动机作为飞机的核心部件,对飞机运行起着至关重要的作用.对航空发动机做准确的剩余使用寿命预测,能够提前进行维护诊断,预防重大事故的发生,节约维护成本.针对现有的方法缺乏对不同时间步长的考虑以及不同传感器和操作条件之间关系的研究,提出了一种基于Transformer的多编码器特征输出融合的航空发动机剩余使用寿命预测方法.该方法选取两个不同时间长度的输入数据,使用排列熵对传感器之间的关系进行分析,并将操作条件数据独立提取特征.在广泛使用的航空发动机CMAPSS(Commercial Modular Aero-Propulsion System Simulation)数据集上进行了实验验证.实验结果表明,该方法优于现有的先进预测方法,可有效提高预测精度.