关键词
基于YOLOv5的航空维修工具识别
作者: 丁发军     刘韶坤     刘义平   来源: 中国民航飞行学院学报 年份: 2023 文献类型 : 期刊 关键词: 目标检测算法   YOLOv5   工具识别   航空维修  
描述: 基于YOLOv5的目标检测算法,对图像进行采集、打标、训练,检测了YOLOv5图像识别的精度。结果表明:对于变形小、无重影图像的识别精度高达0.92,对于显示模糊、内容扭曲的图像识别精度为0.76,识别精度降低17.4%。目前,YOLOv5目标检测算法具有较高的识别精度,但仍需针对扭曲、模糊不清的图形进行算法改进。
融合注意力和多尺度特征的航空发动机缺陷检测
作者: 赵崇林   朱江   胡永进   李祖泽   王鹏举   谢涛   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   YOLOv5   深度学习   缺陷检测  
描述: 航空发动机的结构完整性关乎飞行安全。目前基于孔探技术的航空发动机缺陷检测以人工操作为主。为提高检测精度和效率,提出了一种融合注意力和多尺度特征的航空发动机缺陷智能检测算法,以辅助孔探工作。首先,针对原始孔探图像中缺陷样本的类别不平衡问题,采用了一种基于几何变换和泊松图像编辑的多样本融合数据增强方法,丰富小样本图像并构建缺陷数据集。然后,在基准网络YOLOv5中融入协调注意力模块(CA),以强调缺陷特征的提取,增强网络对缺陷目标和复杂背景的区分。在颈部网络中构建加权双向特征金字塔结构(BiFPN),以完成更高层次的特征融合,提升对多尺度目标的表达能力。最后,将边界框回归损失函数定义为EIOU损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
基于改进YOLOv5的航空发动机表面缺陷检测模型
作者: 李鑫   李香蓉   汪诚   李秋良   李卓越   来源: 激光与光电子学进展 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   机器视觉   YOLOv5   表面缺陷检测  
描述: 针对目前航空发动机表面人工缺陷检测效率低的问题,本文提出了一种基于改进YOLOv5的缺陷检测模型YOLOv5-CE。首先在网络中融合数据增强策略搜索算法,自动为当前数据集搜索最佳的数据增强策略,实现训练效果的提升;其次在Backbone网络中引入坐标注意力机制,在通道注意力的基础上嵌入坐标信息,提高对小缺陷目标的检测能力;最后将YOLOv5的定位损失函数改进为EIoU loss,在加快模型收敛的同时提高预测框回归精度。实验表明,本文提出的YOLOv5-CE模型,相比原YOLOv5s网络,在检测速度几乎没有下降的情况下m AP值提高了1.2%,达到了98.5%,能够实现对航空发动机四种常见类型缺陷的高效智能检测。
融合注意力和多尺度特征的航空发动机缺陷检测
作者: 赵崇林   朱江   胡永进   李祖泽   王鹏举   谢涛   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   YOLOv5   深度学习   缺陷检测  
描述: 航空发动机的结构完整性关乎飞行安全。目前基于孔探技术的航空发动机缺陷检测以人工操作为主。为提高检测精度和效率,提出了一种融合注意力和多尺度特征的航空发动机缺陷智能检测算法,以辅助孔探工作。首先,针对原始孔探图像中缺陷样本的类别不平衡问题,采用了一种基于几何变换和泊松图像编辑的多样本融合数据增强方法,丰富小样本图像并构建缺陷数据集。然后,在基准网络YOLOv5中融入协调注意力模块(CA),以强调缺陷特征的提取,增强网络对缺陷目标和复杂背景的区分。在颈部网络中构建加权双向特征金字塔结构(BiFPN),以完成更高层次的特征融合,提升对多尺度目标的表达能力。最后,将边界框回归损失函数定义为EIOU损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
航空机载红外图像的车辆目标自主检测识别
作者: 杨雪     修吉宏     刘小嘉     罗宁   来源: 激光与红外 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   RFBs   YOLOv5   目标检测   红外图像   BiFPN  
描述: 红外光学成像载荷利用目标的热辐射强度特性成像,具有一定的揭伪能力,可规避可见光成像装备无法在夜间和恶劣气象条件下成像的限制,但红外图像对比度低、边缘不清晰,大大降低了成像目标识别的准确率。本文提出一种基于YOLOv5的红外车辆目标检测算法,在浅层特征层引入RFBs模块,以提高小目标的感受野及检测效果,在颈部网络(Neck)部分,使用BiFPN结构,实现对底层特征的再次利用,以融合更多的特征,并添加CBAM注意力机制以提升检测精度。实验结果表明:在DroneVehicle数据集上的检测效果要优于原始网络,精确率(Precision)提升2.8%,召回率(Recall)提升16%,平均精度(mAP)提升2.3%。结论:可有效应用于航空红外图像的车辆自主检测识别。
基于YOLOv5的航空图像目标检测方法研究
作者: 文青.   来源: 东莞理工学院 年份: 2023 文献类型 : 学位论文 关键词: Circular   损失函数   注意力机制   Transformer   YOLOv5   Smooth   Label   Swin  
描述: 基于YOLOv5的航空图像目标检测方法研究
基于YOLOv5的航空图像目标检测方法研究
作者: 文青.   来源: 东莞理工学院 年份: 2023 文献类型 : 学位论文 关键词: Circular   损失函数   注意力机制   Transformer   YOLOv5   Smooth   Label   Swin  
描述: 基于YOLOv5的航空图像目标检测方法研究
基于YOLOv5的航空图像目标检测方法研究
作者: 文青.   来源: 东莞理工学院 年份: 2023 文献类型 : 学位论文 关键词: Circular   损失函数   注意力机制   Transformer   YOLOv5   Smooth   Label   Swin  
描述: 基于YOLOv5的航空图像目标检测方法研究
基于YOLOv5的航空图像目标检测方法研究
作者: 文青.   来源: 东莞理工学院 年份: 2023 文献类型 : 学位论文 关键词: Circular   损失函数   注意力机制   Transformer   YOLOv5   Smooth   Label   Swin  
描述: 基于YOLOv5的航空图像目标检测方法研究
基于YOLOv5的航空图像目标检测方法研究
作者: 文青.   来源: 东莞理工学院 年份: 2023 文献类型 : 学位论文 关键词: Circular   损失函数   注意力机制   Transformer   YOLOv5   Smooth   Label   Swin  
描述: 基于YOLOv5的航空图像目标检测方法研究
< 1 2 ... 4 5 6
Rss订阅