首页>
根据【关键词:卷积神经网络,长短时记忆网络,深度收缩稀疏自编码络,疲劳状态识别,脑功率图谱】搜索到相关结果 127 条
-
遥感图像飞机目标检测与识别关键技术研究
-
作者:
李冠典
来源:
长春理工大学
年份:
2022
文献类型 :
学位论文
关键词:
飞机目标高效检测
遥感图像
卷积神经网络
深度学习
目标检测
飞机区域识别网络
-
描述:
遥感图像飞机目标检测与识别关键技术研究
-
基于数据驱动的航空发动机剩余寿命预测研究
-
作者:
李雅
来源:
河南大学
年份:
2022
文献类型 :
学位论文
关键词:
注意力机制
航空发动机
卷积神经网络
剩余寿命
图注意力
残差网络
-
描述:
基于数据驱动的航空发动机剩余寿命预测研究
-
基于改进SSD的航空发动机目标缺陷检测
-
作者:
陈为
梁晨红
来源:
第30届中国过程控制会议(CPCC 2019)
年份:
2019
文献类型 :
会议论文
关键词:
数据集
特征提取
卷积神经网络
凸台检测
SSD模型
聚类分析
-
描述:
基于改进SSD的航空发动机目标缺陷检测
-
一种基于级联神经网络的飞机检测方法
-
作者:
王晓林
苏松志
刘晓颖
蔡国榕
李绍滋
来源:
智能系统学报
年份:
2021
文献类型 :
期刊
关键词:
嵌入式设备
遥感图像
级联
卷积神经网络
两阶段
深度学习
飞机检测
由粗到细
-
描述:
由于旋转角度多样性、极端的尺度差异的影响,遥感图像中的飞机检测目前仍存在挑战。为了解决旋转和尺度的问题,目前的策略是将现有的自然场景下的目标检测算法(如Faster R-CNN、SSD等)直接迁移到遥感图像中。这些算法的主干网络复杂,模型占用空间大,难以应用到低功耗和嵌入式设备中。为了在准确率不降低的情况下提高检测速度,本文提出了一个仅包含9层的卷积神经网络来解决飞机检测问题。该网络采用了由粗到细的策略,通过级联两个网络的方式减少计算开销。为了评估方法的有效性,我们建立了一个针对飞机检测的遥感数据集。实验结果表明,该方法超越了VGG16等复杂的主干网络,达到了接近主流检测方法的性能表现,同时显著降低了参数量并使检测速度提高了2倍以上。
-
基于神经网络的航空行李点云检测方法研究
-
作者:
翁博文
胡丹丹
罗其俊
来源:
电子世界
年份:
2020
文献类型 :
期刊
关键词:
随机梯度下降法
测试数据集
点云特征
卷积神经网络
点云数据
云检测
三层感知机
全局特征
多层感知机
-
描述:
针对航空旅客托运行李相似度高、几何特征强、材质复杂等特点,提出一种基于多层神经网络的航空行李点云检测方法。该方采用MLP结构对点云的全局特征进行描述,并针对点云的几何特征引入X-Conv卷积以增强对边缘点云的几何描述,增强网络对空洞点云的识别能力。通过在某机场现场采集的行李点云数据集验证了该方法的准
-
改进YOLO V3遥感图像飞机识别应用
-
作者:
郑志强
刘妍妍
潘长城
李国宁
来源:
电光与控制
年份:
2019
文献类型 :
期刊
关键词:
YOLO
Densenet
遥感图像
means
卷积神经网络
飞机识别
k
V3
-
描述:
为了准确识别遥感图像中的飞机,基于YOLO V3算法,通过使用K-means算法对数据集进行聚类分析,借鉴Densenet网络的思想,将YOLO V3网络中的两个残差网络模块替换为两个密集网络模块,改进为一种Dense-YOLO深度卷积神经网络结构。对改进前与改进后的网络进行训练,分别选出使两个网络识别效果最好的权重文件,针对高质量遥感图像与过度曝光、云雾遮挡等低质量遥感图像分别进行测试与分析。实验结果表明,新改进的深度卷积神经网络应用在两种图像上效果均有提升。其中,改进的算法在高质量的遥感图像中准确率高达99.72%,比原始算法准确率提升了0.85%,召回率高达98.34%,召回率提升了1.94%。在低质量遥感图像中准确率高达96.12%,比原始算法准确率提升了5.07%,召回率高达93.10%,召回率提升了19.75%。
-
基于统一网络架构的多模态航空影像质量评价研究
-
作者:
闫婧
武林伟
刘伟杰
韩如雪
来源:
现代电子技术
年份:
2023
文献类型 :
期刊
关键词:
无参考模型
特征提取
卷积神经网络
特征融合
多模态数据
深度学习
网络结构
影像质量评价
-
描述:
高质量无人机航空影像是目标检测、分析、识别的重要前提条件,但各类传感器成像机理不同,质量影响因素多样,往往需要根据不同模态数据的特性设计不同的网络模型,从而大大增加了质量评价算法在无人机上的应用难度。针对这一问题,提出一种基于统一网络框架的无参考多模态影像质量评价模型,通过自适应地学习图像块内部的局部特征与图像块之间的相互关系,完成空间维度上的全局信息融合和时间维度上的时序信息融合,实现对多种模态影像数据的质量评估,进而快速有效地监测筛选采集数据的质量,提高有效数据采集效率。实验结果表明,该方法在多种模态的影像数据质量评价上具备泛用性和有效性。