首页>
根据【检索词:k法】搜索到相关结果 24 条
-
基于激光跟踪仪的飞机总装数字化测量场构建方法
-
作者:
蔡骏文
付景丽
冯万喜
来源:
测控技术
年份:
2024
文献类型 :
期刊
关键词:
飞机装配
数字化测量场
激光跟踪仪
测量精度
坐标系转换
-
描述:
基于激光跟踪仪的飞机总装数字化测量场构建方法
-
基于小波包和EMD的HHT时频分析方法在航空试验器轴承故障诊断中的应用
-
作者:
吕作鹏
罗健
杨晓彤
苏钧聪
李晓玉
占锐
来源:
测控技术
年份:
2022
文献类型 :
期刊
关键词:
经验模态分解(EMD)
小波包
Huang变换(HHT)
轴承故障频率
航空试验器
Hilbert
-
描述:
为适应高转速要求,航空试验器轴承通常选用陶瓷的球体和复合材料的保持架。这种轴承发热量小,同时保持架材料具有轻且脆的结构特点。轴承振动经过试验器传递到振动传感器后,常规的振动采集与温度监控都很难识别出有效的轴承故障信息,无法对轴承故障进行准确预判。针对这一问题,提出一种基于小波包、经验模态分解(EMD)和Hilbert-Huang变换(HHT)组合的轴承振动信号分析方法。首先,通过小波包对振动噪声的抑制作用,经由EMD方法,对非平稳信号进行平稳化处理;之后,通过HHT时频分析提取出轴承的故障频率。通过将仿真信号和航空试验器的高速工装轴承的故障试验信号进行对比分析,验证了该技术对提取该类轴承故障特征的有效性,可为轴承故障早期诊断方法的研究提供参考。
-
基于改进LSTM的航空发动机气路参数预测方法
-
作者:
马帅
吴亚锋
郑华
缑林峰
来源:
测控技术
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
性能参数预测
特征注意力机制
LSTM网络
故障诊断
-
描述:
以航空燃气涡轮发动机气路故障诊断为导向,提出了一种用于发动机气路参数预测的特征注意力增强型长短时记忆网络(Feature Attention Enhanced Long Short/Term Memory Network,FAE/LSTM)。FAE/LSTM是具有编码/解码结构的动态网络,首先通过编码器中的特征注意力单元对工况序列进行动态特征提取,然后通过特征拼接层融合编码器输出序列、工况序列以及历史性能参数,最后通过解码器实现最终的参数预测。FAE/LSTM基于发动机飞行过程数据建立发动机在健康状态下的动态模型,从而作为参数预测模型应用于基于残差的故障诊断系统中。针对网络的预测性能和应用方式进行了仿真分析,结果表明,相比于其他常用多变量时间序列预测模型,FAE/LSTM的长期预测误差最低减少24.5%;相比于使用串/并联结构,故障检测系统使用并联结构的FAE/LSTM网络能够获得更精确的检测结果。
-
基于改进LSTM的航空发动机气路参数预测方法
-
作者:
马帅
吴亚锋
郑华
缑林峰
来源:
测控技术
年份:
2024
文献类型 :
期刊
关键词:
航空发动机
性能参数预测
特征注意力机制
LSTM网络
故障诊断
-
描述:
以航空燃气涡轮发动机气路故障诊断为导向,提出了一种用于发动机气路参数预测的特征注意力增强型长短时记忆网络(Feature Attention Enhanced Long Short-Term Memory Network, FAE-LSTM)。FAE-LSTM是具有编码-解码结构的动态网络,首先通过编码器中的特征注意力单元对工况序列进行动态特征提取,然后通过特征拼接层融合编码器输出序列、工况序列和历史性能参数,最后通过解码器实现最终的参数预测。FAE-LSTM基于发动机飞行过程数据建立发动机在健康状态下的动态模型,从而作为参数预测模型应用于基于残差的故障诊断系统中。针对网络的预测性能和应用方式进行了仿真分析,结果表明,相比于其他常用多变量时间序列预测模型,FAE-LSTM的长期预测误差最低减少24.5%;相比于使用串-并联结构,故障检测系统使用并联结构的FAE-LSTM网络能够获得更精确的检测结果。