按文献类别分组
关键词
改进YOLOv5的军事飞机检测算法
作者: 王杰     张上     张岳     胡益民   来源: 无线电工程 年份: 2024 文献类型 : 期刊 关键词: FPGM   YOLOv5s   目标检测   Loss   SIOU   军事飞机  
描述: 针对遥感图像中军事飞机目标检测存在的精度低、漏检和虚警率高等问题,提出了一种基于YOLOv5s的轻量化遥感图像军事飞机目标检测算法——YOLO-Military Aircraft
基于YOLOv5的航空发动机部件识别
作者: 敖良忠   朱俊名   王欣   来源: 信息技术与信息化 年份: 2022 文献类型 : 期刊 关键词: 航空发动机   YOLOv5s   增强现实   数据增强   实时识别  
描述: 航空发动机部件数据集,经过YOLOv5s模型训练,获得满意的识别效果。实验结果表明,在真实发动机上进行测试,能够有效地识别13种类别的部件,其平均精准率为90.23%,平均检测速度达到76 FPS,能够在使用增强现实设备时达到实时识别航空发动机部件的要求。
基于YOLOv5的航空发动机部件识别
作者: 敖良忠   朱俊名   王欣   来源: 信息技术与信息化 年份: 2022 文献类型 : 期刊 关键词: 航空发动机   YOLOv5s   增强现实   数据增强   实时识别  
描述: 航空发动机部件数据集,经过YOLOv5s模型训练,获得满意的识别效果。实验结果表明,在真实发动机上进行测试,能够有效地识别13种类别的部件,其平均精准率为90.23%,平均检测速度达到76 FPS,能够在使用增强现实设备时达到实时识别航空发动机部件的要求。
基于YOLOv5的航空维修工具识别
作者: 丁发军     刘韶坤     刘义平   来源: 中国民航飞行学院学报 年份: 2023 文献类型 : 期刊 关键词: 目标检测算法   YOLOv5   工具识别   航空维修  
描述: ,识别精度降低17.4%。目前,YOLOv5目标检测算法具有较高的识别精度,但仍需针对扭曲、模糊不清的图形进行算法改进。
基于YOLOv5的航空维修工具识别
作者: 丁发军     刘韶坤     刘义平   来源: 中国民航飞行学院学报 年份: 2023 文献类型 : 期刊 关键词: 目标检测算法   YOLOv5   工具识别   航空维修  
描述: ,识别精度降低17.4%。目前,YOLOv5目标检测算法具有较高的识别精度,但仍需针对扭曲、模糊不清的图形进行算法改进。
改进的YOLOv5s遥感影像机场场面飞机小目标识别
作者: 张新君     赵春霖   来源: 电光与控制 年份: 2024 文献类型 : 期刊 关键词: 坐标注意力机制   遥感影像   Transformer   YOLOv5s   小目标检测   Swin  
描述: 小目标检测识别测试实验,改进后的YOLOv5s网络的mAP值为0.837 5,比YOLOv5s网络模型提高了0.022 5。实验结果表明,改进后的YOLOv5s网络模型对比YOLO系列网络和EfficientDet模型有效地提高了识别准确率、召回率以及mAP值,并且在训练时间上也比YOLOv5s减少了1/12。
基于改进YOLOv5s的飞机装配环节多余物检测研究
作者: 陈峰   来源: 中国新技术新产品 年份: 2024 文献类型 : 期刊 关键词: 多余物检测   coordinate   DGConv   YOLOv5s   Attention   SIOU   BiFPN  
描述: 飞机装配过程中对多余物的控制有非常严格的要求,传统方法是人工巡检或定时检查,本文提出一种基于改进YOLOv5s的面向多余物检测的目标检测方法。首先,本文提出一种轻量化模块,即DGConv模块,用于
基于改进YOLOv5的飞机舱门识别与定位方法研究
作者: 张长勇     郭聪     李玉洲     张朋武   来源: 计算机测量与控制 年份: 2024 文献类型 : 期刊 关键词: 舱门识别与定位   YOLOv5   机场特种车辆   自动靠机   三维定位  
描述: 角点的像素,利用空间几何关系,实现了对舱门准确的三维定位。实验结果表明,改进后的YOLOv5算法mAP达到96.5%,相比原有算法提升了5.6%。在舱门前方19 m和1 m处时,实时最大定位误差分别为0.15 m和0.01 m,能够满足特种车辆靠机完成后与舱门保持5~10 cm的安全距离要求。
基于改进YOLOv5的轻量化航空目标检测方法
作者: 杨小冈   高凡   卢瑞涛   李维鹏   张涛   曾俊   来源: 信息与控制 年份: 2022 文献类型 : 期刊 关键词: 注意力   通道剪枝   深度学习   目标检测   模型压缩  
描述: 为解决硬件平台资源受限条件下的实时航空目标检测需求,在基于改进YOLOv5的基础上,提出了一种针对移动端设备/边缘计算的轻量化航空目标检测方法。首先以MobileNetv3为基础搭建特征提取网络
基于改进YOLOv5的轻量化航空目标检测方法
作者: 杨小冈   高凡   卢瑞涛   李维鹏   张涛   曾俊   来源: 信息与控制 年份: 2022 文献类型 : 期刊 关键词: 注意力   通道剪枝   深度学习   目标检测   模型压缩  
描述: 为解决硬件平台资源受限条件下的实时航空目标检测需求,在基于改进YOLOv5的基础上,提出了一种针对移动端设备/边缘计算的轻量化航空目标检测方法。首先以MobileNetv3为基础搭建特征提取网络
< 1 2
Rss订阅