关键词
基于YOLO-CapsNet的航空发动机叶片凸台目标检测
作者: 钟欣童   来源: 青岛科技大学 年份: 2021 文献类型 : 学位论文 关键词: YOLO   深度学习   目标检测   叶片凸台   胶囊网络  
描述: 基于YOLO-CapsNet的航空发动机叶片凸台目标检测
基于MPSoC的航空图像目标检测技术研究
作者: 任彬   来源: 中国科学院大学(中国科学院长春光学精密机械与物理研究所) 年份: 2021 文献类型 : 学位论文 关键词: 航空图像   YOLO   MPSoC   目标检测   模型压缩  
描述: 基于MPSoC的航空图像目标检测技术研究
基于深度学习的光学遥感图像飞机检测算法
作者: 董永峰   仉长涛   汪鹏   冯哲   来源: 激光与光电子学进展 年份: 2021 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   图像处理   目标检测   深度学习   Mask   RCNN算法  
描述: 光学遥感图像目标检测一直都是遥感领域研究的热点之一,但现有的检测方法对背景复杂且尺寸较小的目标检测准确率不高。针对以上问题,提出了一种以Mask-RCNN为基础框架的目标检测方法。该算法以ResNet50为特征提取网络并在此基础之上利用特征重用技术来更好地提取目标的语义特征,且针对不同类型的飞机尺寸比例不固定等特点,设计了一组更加合适的候选框尺度集合。实验结果证明,该方法与以往常用的检测算法相比在小物体检测上拥有更高的检测精度。
联合多尺度特征和注意力机制的遥感影像飞机目标检测
作者: 徐佰祺   江刚武   刘建辉   王鑫   魏祥坡   余培东   来源: 测绘科学技术学报 年份: 2021 文献类型 : 期刊 关键词: YOLO   注意力机制   特征融合   遥感影像   V4算法   飞机目标检测  
描述: 针对遥感影像飞机目标尺寸小、特征不明显的问题,在YOLO V4的基础上,提出一种联合多尺度特征和注意力机制的遥感影像飞机目标检测方法。该方法扩大了特征融合时尺度的范围,增强了对低层特征和小目标信息的提取。通过引入注意力机制进行特征融合,为每个通道的特征赋予不同权重,学习不同通道间特征的相关性。在RSOD-Dataset数据集上进行对比实验,实验结果表明该方法与相关算法相比,具有更高的检测精度。
联合多尺度特征和注意力机制的遥感影像飞机目标检测
作者: 徐佰祺   江刚武   刘建辉   王鑫   魏祥坡   余培东   来源: 测绘科学技术学报 年份: 2021 文献类型 : 期刊 关键词: YOLO   注意力机制   特征融合   遥感影像   V4算法   飞机目标检测  
描述: 针对遥感影像飞机目标尺寸小、特征不明显的问题,在YOLO V4的基础上,提出一种联合多尺度特征和注意力机制的遥感影像飞机目标检测方法。该方法扩大了特征融合时尺度的范围,增强了对低层特征和小目标信息的提取。通过引入注意力机制进行特征融合,为每个通道的特征赋予不同权重,学习不同通道间特征的相关性。在RSOD-Dataset数据集上进行对比实验,实验结果表明该方法与相关算法相比,具有更高的检测精度。
基于深度卷积神经网络的空中飞行器图像识别
作者: 谷虹娴   来源: 西安工业大学 年份: 2021 文献类型 : 学位论文 关键词: YOLO   损失函数   卷积神经网络   特征融合方式   空中飞行器识别   V3  
描述: 基于深度卷积神经网络的空中飞行器图像识别
基于生成对抗网络的半监督遥感图像飞机检测
作者: 陈国炜   刘磊   郭嘉逸   潘宗序   胡文龙   来源: 中国科学院大学学报 年份: 2021 文献类型 : 期刊 关键词: 生成对抗网络   目标检测   半监督学习  
描述: 遥感图像上的飞机目标检测是一件极富挑战性的工作,吸引了广大研究者的兴趣。基于人工神经网络的方法是当前遥感图像飞机目标检测的主流方法,这类方法要求人工标记大量的数据用于训练。对训练图像的人工标注工作费时费力,是制约有效利用大规模数据的主要瓶颈之一。为解决这个问题,提出一种基于生成对抗网络(generative adversarial networks,GAN)的半监督检测方法。在遥感图像飞机目标检测中,该方法不需要标记全部用于训练的图像,只需要标记其中一小部分样本,再和大量未标记数据一起进行训练便能取得优异的检测结果。该方法结合传统的检测网络和基于GAN的半监督学习网络。在对抗训练过程中,生成器学习数据分布并生成假样本,判别器判别真假样本,同时判别器还需要从标记数据中学习类别信息。最后,判别器学习到的决策分类面不仅仅区分出标记数据,而且平行于数据分布的边界。实验证明,在存在大量可供训练的图像的基础上,减少标注数据的比例,全监督学习方法性能会大幅下降;而本文提出的半监督学习方法,由于利用了未标注的数据,能保持更好的检测性能。
基于生成对抗网络的半监督遥感图像飞机检测
作者: 陈国炜   刘磊   郭嘉逸   潘宗序   胡文龙   来源: 中国科学院大学学报 年份: 2021 文献类型 : 期刊 关键词: 生成对抗网络   目标检测   半监督学习  
描述: 遥感图像上的飞机目标检测是一件极富挑战性的工作,吸引了广大研究者的兴趣。基于人工神经网络的方法是当前遥感图像飞机目标检测的主流方法,这类方法要求人工标记大量的数据用于训练。对训练图像的人工标注工作费时费力,是制约有效利用大规模数据的主要瓶颈之一。为解决这个问题,提出一种基于生成对抗网络(generative adversarial networks,GAN)的半监督检测方法。在遥感图像飞机目标检测中,该方法不需要标记全部用于训练的图像,只需要标记其中一小部分样本,再和大量未标记数据一起进行训练便能取得优异的检测结果。该方法结合传统的检测网络和基于GAN的半监督学习网络。在对抗训练过程中,生成器学习数据分布并生成假样本,判别器判别真假样本,同时判别器还需要从标记数据中学习类别信息。最后,判别器学习到的决策分类面不仅仅区分出标记数据,而且平行于数据分布的边界。实验证明,在存在大量可供训练的图像的基础上,减少标注数据的比例,全监督学习方法性能会大幅下降;而本文提出的半监督学习方法,由于利用了未标注的数据,能保持更好的检测性能。
基于关键点的飞机表面伤痕检测及后处理算法研究
作者: 李婉婷   来源: 北京邮电大学 年份: 2021 文献类型 : 学位论文 关键词: 目标检测   非极小值反馈   关键点   飞机表面伤痕  
描述: 基于关键点的飞机表面伤痕检测及后处理算法研究
平面上多核心Voronoi图的算法研究及应用
作者: 周晓芸   来源: 南昌大学 年份: 2021 文献类型 : 学位论文 关键词: DBSCAN聚类   目标检测   Voronoi图   多边形集合  
描述: 平面上多核心Voronoi图的算法研究及应用
< 1 2 ... 4 5 6
Rss订阅