关键词
基于机器视觉的舰载机位姿实时测量方法研究
作者: 郑天昊   来源: 哈尔滨工程大学 年份: 2021 文献类型 : 学位论文 关键词: 机器视觉   舰载机位姿   深度学习   模板匹配  
描述: 基于机器视觉的舰载机位姿实时测量方法研究
基于深度学习的航空高光谱蚀变矿物识别技术研究
作者: 易敏   来源: 核工业北京地质研究院 年份: 2022 文献类型 : 学位论文 关键词: 空间信息   蚀变矿物填图   深度学习   航空高光谱  
描述: 基于深度学习的航空高光谱蚀变矿物识别技术研究
面向航空管制的轻量化语音增强算法研究与实现
作者: 吕忆蓝   来源: 电子科技大学 年份: 2022 文献类型 : 学位论文 关键词: 语音增强   噪声自适应   轻量级卷积神经网络   深度学习  
描述: 面向航空管制的轻量化语音增强算法研究与实现
基于深度学习的航空影像非正规垃圾堆放点监测技术研究与实践
作者: 李军吉   应良中   陶文旷   来源: 测绘通报 年份: 2023 文献类型 : 期刊 关键词: 深度学习   无人机   航空影像   非正规垃圾堆放点  
描述: 城市化进程的加快导致垃圾随处堆放的问题日益突出,给城市的环境及居民的生活质量造成了严重的影响。利用遥感手段快速监测非正规垃圾堆放点具有及时性和高效性,因此具有十分重要的意义。本文结合无人机高分辨率航空影像及非正规垃圾堆分布特征,提出了按地域特征勾画样本数据集提取样本数据特征,采用U/Net和Swin Transformer融合模型,以及针对性改进训练流程开展非正规垃圾堆放点信息分类研究。试验以绍兴市越城区、柯桥区和上虞区作为研究区域,利用飞马航测无人机获取航空影像数据,对比分析了本文提出的方法和基于深度学习的典型地物要素提取方法在非正规垃圾堆放点监测上的应用,试验结果表明本文提出的方法准确率提高了1.72倍。
基于深度学习的航空装备保障初级指挥专业人才培养探索
作者: 王利明   祝华远   纪云飞   马海洋   刘杨   来源: 大学教育 年份: 2023 文献类型 : 期刊 关键词: 初级指挥   培养方式   深度学习   航空装备保障  
描述: 该研究基于深度学习理论,从情感、行为、认知3个层面,采取认知重组、联系、反馈、参与、问题、激励、交互、拓展8项策略,构建了以16项教学活动为主体的深度学习策略模型,探索了课程与教学活动相耦合的人才培养方式。教学实践表明,该研究使航空装备保障初级指挥专业人才培养的“指挥管理”特质得到巩固强化。
航空发动机叶片称重排序系统
作者: 赵维松   来源: 西南交通大学 年份: 2021 文献类型 : 学位论文 关键词: 图片预处理   深度学习   称重排序   航空发动机叶片  
描述: 航空发动机叶片称重排序系统
基于GRU的飞机总装生产线动态调度方法
作者: 王怡琳   刘鹃   乔非   来源: '21 全国仿真技术学术会议 年份: 2021 文献类型 : 会议论文 关键词: 动态调度   飞机总装生产线   深度学习   门控循环神经网络  
描述: 基于GRU的飞机总装生产线动态调度方法
基于Bi/GRU模型的航空发动机外部液压管路故障诊断研究
作者: 黄续芳   赵平   冯铃   张丽   来源: 机床与液压 年份: 2023 文献类型 : 期刊 关键词: 液压管路   故障诊断   深度学习   Bi/GRU模型  
描述: 针对航空液压管路故障信号含有噪声干扰导致管路故障识别困难的问题,提出一种基于双向门控循环单元(Bi/GRU)的深度学习液压管路故障诊断方法。由Bi/GRU神经网络模型综合液压管路数据进行时序特征提取,基于同一含噪声的液压管路振动实测数据,输入到Bi/GRU、GRU、RNN、SVM、BPNN等5种故障诊断模型中进行训练。最后,为了进一步展示Bi/GRU模型对于航空液压管路不同故障类型特征的学习能力,利用t/SNE降维算法进行液压管路特征可视化。结果表明:基于Bi/GRU航空故障诊断方法能达到99.60%的准确性,明显优于GRU等其他4种神经网络模型,Bi/GRU模型在含有噪声的液压管路数据上具备更出色的特征提取能力,可有效地提取出液压管路故障数据特征,从而实现了液压管路故障的智能化识别。
基于关键点检测的航空发动机螺栓安装缺陷自动化检测方法
作者: 辛佳雯   王睿   谢艳霞   孙军华   来源: 仪器仪表学报 年份: 2023 文献类型 : 期刊 关键词: 关键点检测   深度学习   双目立体视觉   缺陷检测  
描述: 针对航空发动机螺栓存在背景复杂、目标小、且精细特征不明显的问题,本文研究了一种基于关键点检测的航空发动机螺栓安装缺陷的自动化检测方法。首先设计了基于Faster RCNN和改进CPN(AD-CPN)的级联卷积神经网络,实现了图像中螺栓及二维关键点的检测,可判断该螺栓是否脱落、漏装。为进一步检测螺栓的三维安装缺陷,通过欧氏距离选择策略对已检测出的关键点进行双目匹配、筛选以获得检测点对,最后对检测点对三维重构,并计算出螺栓的实际长度,从而判断螺栓是否错装。实验结果表明,相较于CPN,AD-CPN的mAP、AP50、AP75分别提升了2.9%、3.3%、4%;螺栓测量长度的相对平均误差约为3.0%,可见该方法具有较高的缺陷检测准确率,有效保障了航空发动机的安全运行。
航空重力梯度测量误差补偿的深度学习方法研究
作者: 李桐林   程一   来源: 2020年中国地球科学联合学术年会 年份: 2020 文献类型 : 会议论文 关键词: 重力梯度测量   深度学习   测量方程   神经网络  
描述: 航空重力梯度测量误差补偿的深度学习方法研究
< 1 2 3 ... 10 11 12 ... 22 23 24
Rss订阅