首页>
根据【关键词:YOLO,整机电缆检测,工艺转接电缆,航空电连接器,工艺辅助单元】搜索到相关结果 121 条
-
航空电连接器标准及体系分析
-
作者:
王宏霞
董文亮
来源:
中国电子学会元件分会第八届连接器与开关学术会议
年份:
2016
文献类型 :
会议论文
关键词:
标准体系
航空电连接器
-
描述:
航空电连接器标准及体系分析
-
航空电连接器标准及体系分析
-
作者:
王宏霞
董文亮
来源:
中国电子学会元件分会第八届连接器与开关学术会议
年份:
2016
文献类型 :
会议论文
关键词:
标准体系
航空电连接器
-
描述:
航空电连接器标准及体系分析
-
基于剪枝和去噪的航空发动机故障图像识别与预测
-
作者:
傅荣春雪
刘君强
冯潇楠
余卓倩
来源:
航空计算技术
年份:
2023
文献类型 :
期刊
关键词:
YOLO
图像去噪
目标检测
孔探图像
剪枝算法
-
描述:
航空发动机叶片作为航空器重要的零件,其健康状况直接关系到航班的运行安全。叶片由于工作环境恶劣很容易产生裂纹、掉块、烧灼等损伤,目前基于孔探技术的叶片损伤检测以人工为主,检测结果在很大程度上受到人为因素的影响。因此,实现叶片损伤的自动识别及测量对于减轻劳动强度和提高检测精度都有实际的应用价值。首先选择PRIDnet图像去噪算法对原始孔探图像进行预处理,按照训练精度和训练速度两个指标对传统目标检测模型进行通道剪枝和微调。数据集采用国内某航空公司获取到CFM56型发动机在实际运营后机务人员所拍摄的孔探图像,实验结果表明,相比于原始目标检测YOLOv5算法和未经图像预处理的目标检测模型,本方法对航空发动机孔探图像内损伤的检测精度提高4%~10%,在检测效率上提高6%~20%。
-
基于YOLO-CapsNet的航空发动机叶片凸台目标检测
-
作者:
钟欣童
来源:
青岛科技大学
年份:
2021
文献类型 :
学位论文
关键词:
YOLO
深度学习
目标检测
叶片凸台
胶囊网络
-
描述:
基于YOLO-CapsNet的航空发动机叶片凸台目标检测
-
基于MPSoC的航空图像目标检测技术研究
-
作者:
任彬
来源:
中国科学院大学(中国科学院长春光学精密机械与物理研究所)
年份:
2021
文献类型 :
学位论文
关键词:
航空图像
YOLO
MPSoC
目标检测
模型压缩
-
描述:
基于MPSoC的航空图像目标检测技术研究
-
基于YOLO-CapsNet的航空发动机叶片凸台目标检测
-
作者:
钟欣童
来源:
青岛科技大学
年份:
2021
文献类型 :
学位论文
关键词:
YOLO
深度学习
目标检测
叶片凸台
胶囊网络
-
描述:
基于YOLO-CapsNet的航空发动机叶片凸台目标检测
-
基于MPSoC的航空图像目标检测技术研究
-
作者:
任彬
来源:
中国科学院大学(中国科学院长春光学精密机械与物理研究所)
年份:
2021
文献类型 :
学位论文
关键词:
航空图像
YOLO
MPSoC
目标检测
模型压缩
-
描述:
基于MPSoC的航空图像目标检测技术研究
-
联合多尺度特征和注意力机制的遥感影像飞机目标检测
-
作者:
徐佰祺
江刚武
刘建辉
王鑫
魏祥坡
余培东
来源:
测绘科学技术学报
年份:
2021
文献类型 :
期刊
关键词:
YOLO
注意力机制
特征融合
遥感影像
V4算法
飞机目标检测
-
描述:
针对遥感影像飞机目标尺寸小、特征不明显的问题,在YOLO V4的基础上,提出一种联合多尺度特征和注意力机制的遥感影像飞机目标检测方法。该方法扩大了特征融合时尺度的范围,增强了对低层特征和小目标信息的提取。通过引入注意力机制进行特征融合,为每个通道的特征赋予不同权重,学习不同通道间特征的相关性。在RSOD-Dataset数据集上进行对比实验,实验结果表明该方法与相关算法相比,具有更高的检测精度。
-
联合多尺度特征和注意力机制的遥感影像飞机目标检测
-
作者:
徐佰祺
江刚武
刘建辉
王鑫
魏祥坡
余培东
来源:
测绘科学技术学报
年份:
2021
文献类型 :
期刊
关键词:
YOLO
注意力机制
特征融合
遥感影像
V4算法
飞机目标检测
-
描述:
针对遥感影像飞机目标尺寸小、特征不明显的问题,在YOLO V4的基础上,提出一种联合多尺度特征和注意力机制的遥感影像飞机目标检测方法。该方法扩大了特征融合时尺度的范围,增强了对低层特征和小目标信息的提取。通过引入注意力机制进行特征融合,为每个通道的特征赋予不同权重,学习不同通道间特征的相关性。在RSOD-Dataset数据集上进行对比实验,实验结果表明该方法与相关算法相比,具有更高的检测精度。
-
面向航空发动机油路密封管件的高鲁棒性视觉定位算法研究
-
作者:
崔俊佳
刘枭
赖铭
王绍螺
蒋浩
李光耀
来源:
航空制造技术
年份:
2023
文献类型 :
期刊
关键词:
YOLO
机器视觉
孪生网络
视觉定位
Siamese
变化检测网络
-
描述:
航空航天行业零部件种类繁多、定制化程度高,难以进行定位夹具的开发。视觉定位技术是智能制造中的关键一环,该技术基于机器视觉确定工件位置,不需要定位夹具,能够被广泛运用于各种工况。但现有视觉定位算法只适用于少数种类的零件,泛用性不高。本文提出了一种基于YOLOv5s目标检测网络和Siamese孪生网络的新型视觉定位算法(YOLO–Siamese变化检测网络)。网络引入ConvDiff(卷积差分)模块来提升变化检测网络的特征提取效果,并采用半监督学习方法对模型进行训练。试验表明,在没有使用目标工件数据集的条件下,算法在验证集上的AP@0.5达到了99.3%,AP@0.5:0.95达到了89.6%,单帧推理时间为16.13 ms。该算法无需目标工件数据、定位精度高、运算速度快,提高了视觉定位算法的鲁棒性和泛用性。