首页>
根据【关键词:遥感图像,注意力机制,飞机检测,特征增强,残差连接,轻量级】搜索到相关结果 46 条
-
基于注意力机制的航空图像旋转框目标检测
-
作者:
常洪彬
李文举
李文辉
来源:
吉林大学学报(理学版)
年份:
2022
文献类型 :
期刊
关键词:
航空图像
注意力机制
目标检测
深度学习
-
描述:
针对在航空遥感图像目标检测中,航空图像在俯视图下呈任意方向排列,存在图像尺寸大、方向任意和背景复杂等问题,为能在复杂背景的航空图像中仍有较好的检测结果,提出一种基于注意力机制的旋转框航空图像目标检测模型.该模型首先采用RetinaNet作为基线模型,在原有检测器结构的基础上,增加额外的角度参数以适应旋转框目标检测;然后提出一个新的通道语义提取注意力模块(CSE),用于捕获全局语义信息和通道关系,并预测粗糙包围盒与分类分数;最后采用特征对齐和改进的Fast R-CNN检测头进行精细化处理,进一步提升检测精度,得到最后的分类和回归结果.实验结果表明,该方法在公开航空遥感数据集DOTA上的检测精度达到77.71%,优于其他先进的旋转框目标检测方法.
-
基于卷积神经网络的高分辨率SAR图像飞机目标检测方法
-
作者:
王思雨
高鑫
孙皓
郑歆慰
孙显
来源:
雷达学报
年份:
2017
文献类型 :
期刊
关键词:
合成孔径雷达(SAR)
数据增强
视觉显著性
飞机检测
卷积神经网络(CNN)
-
描述:
传统的合成孔径雷达(Synthetic Aperture Radar,SAR)图像飞机检测方法一般利用像素对比度信息进行图像分割,从而提取待定目标。然而这些方法只考虑了像素亮度信息而忽视了目标的结构特征,进而导致目标的不精确定位和大量虚警的产生。基于上述问题,该文构建了一个全新的SAR图像飞机目标检测算法框架。首先,针对大场景SAR图像应用需求,提出了改进的显著性预检测方法,从而实现SAR图像候选飞机目标多尺度快速粗定位;然后,设计并调优了含4个权重层的卷积神经网络(Convolutional Neural Network,CNN),实现对候选目标的精确检测和鉴别;最后,因为SAR数据量有限、易导致过拟合,提出4种适用于SAR图像的数据增强方法,具体包括平移、斑点加噪、对比度增强和小角度旋转。实验证实该飞机检测算法在高分辨率Terra SAR-X数据集上效果显著,与传统的SAR飞机检测方法相比,该方法检测效率更高,泛化能力更强。
-
基于卷积神经网络的高分辨率SAR图像飞机目标检测方法
-
作者:
王思雨
高鑫
孙皓
郑歆慰
孙显
来源:
雷达学报
年份:
2017
文献类型 :
期刊
关键词:
合成孔径雷达(SAR)
数据增强
视觉显著性
飞机检测
卷积神经网络(CNN)
-
描述:
传统的合成孔径雷达(Synthetic Aperture Radar,SAR)图像飞机检测方法一般利用像素对比度信息进行图像分割,从而提取待定目标。然而这些方法只考虑了像素亮度信息而忽视了目标的结构特征,进而导致目标的不精确定位和大量虚警的产生。基于上述问题,该文构建了一个全新的SAR图像飞机目标检测算法框架。首先,针对大场景SAR图像应用需求,提出了改进的显著性预检测方法,从而实现SAR图像候选飞机目标多尺度快速粗定位;然后,设计并调优了含4个权重层的卷积神经网络(Convolutional Neural Network,CNN),实现对候选目标的精确检测和鉴别;最后,因为SAR数据量有限、易导致过拟合,提出4种适用于SAR图像的数据增强方法,具体包括平移、斑点加噪、对比度增强和小角度旋转。实验证实该飞机检测算法在高分辨率Terra SAR-X数据集上效果显著,与传统的SAR飞机检测方法相比,该方法检测效率更高,泛化能力更强。
-
基于卷积神经网络的高分辨率SAR图像飞机目标检测方法
-
作者:
王思雨
高鑫
孙皓
郑歆慰
孙显
来源:
雷达学报
年份:
2019
文献类型 :
期刊
关键词:
合成孔径雷达(SAR)
数据增强
视觉显著性
飞机检测
卷积神经网络(CNN)
-
描述:
传统的合成孔径雷达(Synthetic Aperture Radar,SAR)图像飞机检测方法一般利用像素对比度信息进行图像分割,从而提取待定目标。然而这些方法只考虑了像素亮度信息而忽视了目标的结构特征,进而导致目标的不精确定位和大量虚警的产生。基于上述问题,该文构建了一个全新的SAR图像飞机目标检测算法框架。首先,针对大场景SAR图像应用需求,提出了改进的显著性预检测方法,从而实现SAR图像候选飞机目标多尺度快速粗定位;然后,设计并调优了含4个权重层的卷积神经网络(Convolutional Neural Network,CNN),实现对候选目标的精确检测和鉴别;最后,因为SAR数据量有限、易导致过拟合,提出4种适用于SAR图像的数据增强方法,具体包括平移、斑点加噪、对比度增强和小角度旋转。实验证实该飞机检测算法在高分辨率Terra SAR-X数据集上效果显著,与传统的SAR飞机检测方法相比,该方法检测效率更高,泛化能力更强。
-
一种高效的高分辨率遥感影像飞机目标检测方法
-
作者:
刘媛
姚剑
冯辰
来源:
测绘地理信息
年份:
2020
文献类型 :
期刊
关键词:
高分辨率遥感影像
直线概率图
深度学习
飞机检测
显著性
-
描述:
一种高效的高分辨率遥感影像飞机目标检测方法
-
SAR图像飞机目标检测识别进展
-
作者:
郭倩
王海鹏
徐丰
来源:
雷达学报
年份:
2020
文献类型 :
期刊
关键词:
飞机识别
合成孔径雷达
散射信息
深度学习
飞机检测
-
描述:
目标检测与识别是高分辨合成孔径雷达(SAR)领域的热点问题。机场上飞机作为一种典型目标,其检测和识别有一定的独特性。该文回顾了SAR图像典型目标检测识别领域技术的发展过程,分析了SAR图像中飞机目标的散射机制及面临的技术难点,阐述了SAR飞机目标检测识别的系统流程、技术路线和关键科学问题,对基于传统与基于深度学习两个方面的飞机目标检测识别的研究进展进行了归纳总结,并讨论了各类方法的特点及存在的问题,展望了未来的发展趋势。该文认为如何将深度学习与目标电磁散射机理结合、提高网络或模型的泛化能力是提升SAR图像中目标检测识别精度的关键,并给出了一种基于散射信息与深度学习融合的飞机目标检测方法。
-
基于特征融合与软判决的遥感图像飞机检测
-
作者:
朱明明
许悦雷
马时平
李帅
马红强
来源:
光学学报
年份:
2019
文献类型 :
期刊
关键词:
区域卷积神经网络
特征融合
图像处理
软判决
飞机检测
-
描述:
提出了一种特征融合结合软判决的飞机检测方法。以区域卷积神经网络为基本框架,依次采用L2范数归一化、特征连接、尺度缩放和特征降维来融合多层特征。为了降低网络在目标高度重叠时的漏检率,引入软判决来改进传统的非极大值抑制方法。实验结果表明,所提方法能够准确快速地检测到飞机,得到检测率为94.25%、虚警率为5.5%、平均运行时间为0.16 s的实验结果。与现有的其他检测方法相比,所提方法的各项指标均得到显著提升。
-
高分辨率航空遥感图像的建筑物识别
-
作者:
王玉琴
尤静静
蔡世鑫
来源:
北京测绘
年份:
2023
文献类型 :
期刊
关键词:
遥感图像
RCNN)模型
快速区域卷积神经网络(Faster
建筑物识别
深度学习
-
描述:
目前深度学习方法的研究已在语音辨别、图像识别、信息检索等方面取得较大成果。建筑物的自动检测与识别已成为遥感图像处理范畴研究的热点。针对高分辨率航空遥感影像中的建筑物快速、精准识别的应用问题,文章提出利用深度学习方法中的快速区域卷积神经网络(Faster RCNN)模型对航空遥感图像进行建筑物识别,经验证,利用Faster RCNN模型对航空遥感图像进行建筑物识别其结果可达93.7%的精准率,平均每张图像识别时间为74 ms,证明了Faster RCNN模型应用于航空遥感图像建筑物识别中的有效性及高效性。
-
基于深度神经网络的遥感图像飞机目标检测
-
作者:
李文斌
何冉
来源:
计算机工程
年份:
2021
文献类型 :
期刊
关键词:
遥感图像
卷积神经网络
目标检测
密度聚类
像素级标签
-
描述:
。实验结果表明,DC-DNN模型对于遥感图像飞机目标检测的准确率、召回率和F1值分别为95.78%、98.98%和0.973 5,相比WS-DNN、R-FCN等模型具有更好的检测性能和泛化能力。
-
基于深度神经网络的遥感图像飞机目标检测
-
作者:
李文斌
何冉
来源:
计算机工程
年份:
2021
文献类型 :
期刊
关键词:
遥感图像
卷积神经网络
目标检测
密度聚类
像素级标签
-
描述:
。实验结果表明,DC-DNN模型对于遥感图像飞机目标检测的准确率、召回率和F1值分别为95.78%、98.98%和0.973 5,相比WS-DNN、R-FCN等模型具有更好的检测性能和泛化能力。