首页
图书
期刊
学位论文
会议论文
报纸
图片
视频
新闻动态
全部
图书
期刊
学位论文
会议论文
报纸
图片
视频
新闻
首页>
根据【关键词:
遥感图像,卷积神经网络,深度学习,分数阶Gabor变换,飞机目标检测
】搜索到相关结果
6
条
按文献类别分组
学位论文
(480)
期刊
(196)
会议论文
(30)
按栏目分组
学位论文
(480)
期刊
(196)
会议论文
(30)
按年份分组
2025
(30)
2024
(68)
2023
(158)
2022
(91)
2021
(97)
2020
(110)
2019
(84)
2018
(60)
2017
(8)
按来源分组
中国民用航空飞行学院
(74)
西安电子科技大学
(24)
哈尔滨工业大学
(22)
电子科技大学
(18)
长江大学
(10)
吉林大学
(10)
激光与光电子学进展
(7)
北京航空航天大学学报
(6)
计算机工程
(5)
中国科学院大学(中国科学院上海技术物理研究所)
(4)
中国科学技术大学
(4)
计算机应用
(3)
计算机科学
(3)
中国地质大学(北京)
(2)
航空电子技术
(2)
电光与控制
(2)
中国科学院大学(中国科学院西安光学精密机械研究所)
(2)
第五届高分辨率对地观测学术年会
(2)
北京理工大学
(2)
中国矿业大学
(2)
长春理工大学
(2)
世界核地质科学
(1)
太原科技大学学报
(1)
北京测绘
(1)
海洋测绘
(1)
光子学报
(1)
光电子技术
(1)
智能系统学报
(1)
微型机与应用
(1)
航天返回与遥感
(1)
关键词
遥感图像
飞机目标高效搜检
深度学习
优化算法
作者:
郭琳
秦世引
来源:
北京航空航天大学学报
年份:
2019
文献类型 :
期刊
关键词:
停机坪与跑道分割
深度神经网络
深度学习
飞机目标检测
大幅面遥感图像
描述:
为了实现大幅面
遥感图像
中飞机目标的高效检测与准确定位,通过深度神经网络(DNN)的级联组合,提出了一种新颖的搜寻与检测相集成的飞机目标高效检测算法。首先,运用高性能的端到端DNN网络,进行停机坪与
基于视觉Transformer飞行员姿态估计
作者:
吴红兰
刘豪
孙有朝
来源:
北京航空航天大学学报
年份:
2024
文献类型 :
期刊
关键词:
卷积神经网络
智能驾驶舱
民用飞机
飞行员姿态估计
自注意力
可解释性
描述:
飞行员姿态(ViTPPose)估计模型,该模型在
卷积神经网络
(CNN)主干网络末端使用包含多层编码层的双支路Transformer模块,编码层联合Transformer和空洞卷积,在增大感受野的同时捕捉
融合注意力和多尺度特征的航空发动机缺陷检测
作者:
赵崇林
朱江
胡永进
李祖泽
王鹏举
谢涛
来源:
北京航空航天大学学报
年份:
2023
文献类型 :
期刊
关键词:
注意力机制
航空发动机
YOLOv5
深度学习
缺陷检测
描述:
航空发动机的结构完整性关乎飞行安全。目前基于孔探技术的航空发动机缺陷检测以人工操作为主。为提高检测精度和效率,提出了一种融合注意力和多尺度特征的航空发动机缺陷智能检测算法,以辅助孔探工作。首先,针对原始孔探图像中缺陷样本的类别不平衡问题,采用了一种基于几何变换和泊松图像编辑的多样本融合数据增强方法,丰富小样本图像并构建缺陷数据集。然后,在基准网络YOLOv5中融入协调注意力模块(CA),以强调缺陷特征的提取,增强网络对缺陷目标和复杂背景的区分。在颈部网络中构建加权双向特征金字塔结构(BiFPN),以完成更高层次的特征融合,提升对多尺度目标的表达能力。最后,将边界框回归损失函数定义为EIOU损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
基于
深度学习
的航空发动机故障融合诊断
作者:
车畅畅
王华伟
倪晓梅
洪骥宇
来源:
北京航空航天大学学报
年份:
2018
文献类型 :
期刊
关键词:
航空发动机
故障诊断
深度学习
抗干扰能力
决策融合
描述:
通过对航空发动机故障诊断,能够正确判断各部件工作状态,快速确定维修方案,保证飞行安全。在结合深度信念网络和决策融合理论的基础上,提出了基于
深度学习
的航空发动机故障融合诊断模型。该模型通过分析发动机
融合注意力和多尺度特征的航空发动机缺陷检测
作者:
赵崇林
朱江
胡永进
李祖泽
王鹏举
谢涛
来源:
北京航空航天大学学报
年份:
2023
文献类型 :
期刊
关键词:
注意力机制
航空发动机
YOLOv5
深度学习
缺陷检测
描述:
航空发动机的结构完整性关乎飞行安全。目前基于孔探技术的航空发动机缺陷检测以人工操作为主。为提高检测精度和效率,提出了一种融合注意力和多尺度特征的航空发动机缺陷智能检测算法,以辅助孔探工作。首先,针对原始孔探图像中缺陷样本的类别不平衡问题,采用了一种基于几何变换和泊松图像编辑的多样本融合数据增强方法,丰富小样本图像并构建缺陷数据集。然后,在基准网络YOLOv5中融入协调注意力模块(CA),以强调缺陷特征的提取,增强网络对缺陷目标和复杂背景的区分。在颈部网络中构建加权双向特征金字塔结构(BiFPN),以完成更高层次的特征融合,提升对多尺度目标的表达能力。最后,将边界框回归损失函数定义为EIOU损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
航空发动机润滑系统故障知识图谱构建及应用
作者:
吴闯
张亮
唐希浪
崔利杰
谢小月
来源:
北京航空航天大学学报
年份:
2024
文献类型 :
期刊
关键词:
航空发动机
深度学习
润滑系统
知识问答
知识图谱
描述:
故障知识图谱本体概念的基础上,采用双向长短期记忆(BiLSTM)神经网络和条件随机场(CRF)等
深度学习
技术实现知识自主抽取,并基于余弦距离和Jaccard相关系数法进行多源异构故障知识的融合。同时,基于
<
1
>
Rss订阅
订阅地址: