首页>
根据【关键词:特征提取,点云配准,孔检测,三维重建】搜索到相关结果 117 条
-
基于DBN的航空发电机故障诊断方法研究
-
作者:
马楠
倪优扬
葛红娟
来源:
航空计算技术
年份:
2021
文献类型 :
期刊
关键词:
特征提取
航空发电机
故障诊断
深度置信网络
-
描述:
针对目前故障诊断方法多依赖于信号处理技术、步骤较为繁琐的问题,研究了一种基于深度置信网络的航空主电源故障诊断方法,直接对原始时域信号进行故障特征提取。分析了航空发电机的典型短路故障,构造了深度置信
-
基于DBN的航空发电机故障诊断方法研究
-
作者:
马楠
倪优扬
葛红娟
来源:
航空计算技术
年份:
2021
文献类型 :
期刊
关键词:
特征提取
航空发电机
故障诊断
深度置信网络
-
描述:
针对目前故障诊断方法多依赖于信号处理技术、步骤较为繁琐的问题,研究了一种基于深度置信网络的航空主电源故障诊断方法,直接对原始时域信号进行故障特征提取。分析了航空发电机的典型短路故障,构造了深度置信
-
基于VFDT特征的空中飞机目标分类方法
-
作者:
李秋生
张华霞
来源:
雷达科学与技术
年份:
2021
文献类型 :
期刊
关键词:
特征提取
低分辨雷达
目标分类
方差分形维轨迹
-
描述:
的多重分形算法对飞机回波进行特性分析和特征提取,基于提出的VFDT特征并结合支持向量机(SVM),对实际录取的多种类型飞机回波进行了目标分类识别实验。实验结果表明,VFDT特征可以较好地对多种不同类型的飞机目标进行分类辨识,并具有较小的计算量。
-
基于军事飞机图像结合FCN的目标检测技术应用
-
作者:
张春雷
来源:
电子测试
年份:
2019
文献类型 :
期刊
关键词:
特征提取
全卷积神经网络
目标检测
-
描述:
图像分割是图像识别和目标检测的重要工作,军事图像目标检测与准确分割是分析军事目标的核心工作。针对这一工作,本文将全卷积神经网络(全卷积神经网络)应用在军事飞机图像的目标获取上,通过全卷积神经网络强大的特征提取和识别能力,准确获取目标区域,对分析图像信息提供参考性意义。
-
多特征分类的PolSAR图像飞机目标检测
-
作者:
卢晓光
周波
韩萍
韩宾宾
来源:
信号处理
年份:
2019
文献类型 :
期刊
关键词:
特征提取
极化合成孔径雷达
飞机目标检测
SVM分类器
-
描述:
针对目前有关极化合成孔径雷达(Polarimetric Synthetic Aperture Radar, PolSAR)的飞机目标检测算法虚警较多、自适应性较差的问题,给出一种复杂大场景中PolSAR图像多特征分类的飞机目标检测方法。该方法分为线下分类器训练和飞机目标检测两部分。使用Filter特征选择结合穷举法筛选出分类性能高的飞机极化特征训练SVM(Support Vector Machine, SVM)分类器;利用异化散射功率提取疑似飞机目标,进一步提取多个极化特征送入SVM分类获得检测结果。利用UAVSAR系统采集的多幅实测数据进行实验,并与现有的PolSAR图像飞机目标检测算法进行对比,结果表明该方法能够有效检测出飞机目标,并且虚警和漏警较少,方法自适应性有所提高。
-
基于ARMA谐波恢复的飞机目标分类
-
作者:
李秋生
张华霞
邓仰晨
刘小燕
来源:
赣南师范大学学报
年份:
2019
文献类型 :
期刊
关键词:
特征提取
谐波建模
目标分类
常规雷达
-
描述:
作为一类复杂目标,飞机的机体振动、姿态变化和旋转部件的转动都会对雷达照射回波施加非线性的调制作用,对回波进行ARMA谐波建模可以对其非线性调制特征进行精细刻画.在介绍常规低分辨飞机目标雷达回波的数学模型和谐波恢复的ARMA建模算法的基础上,对实际录取的多种类型飞机回波进行了ARMA谐波建模分析,并对ARMA谐波模型参数在目标分类中的应用进行探讨.研究结果表明,基于谐波恢复的ARMA建模法能够有效地对飞机目标雷达回波进行建模,且其模型特征能够较好地对各种不同类型实验目标进行分类.
-
基于军事飞机图像结合FCN的目标检测技术应用
-
作者:
张春雷
来源:
电子测试
年份:
2019
文献类型 :
期刊
关键词:
特征提取
全卷积神经网络
目标检测
-
描述:
图像分割是图像识别和目标检测的重要工作,军事图像目标检测与准确分割是分析军事目标的核心工作。针对这一工作,本文将全卷积神经网络(全卷积神经网络)应用在军事飞机图像的目标获取上,通过全卷积神经网络强大的特征提取和识别能力,准确获取目标区域,对分析图像信息提供参考性意义。
-
基于朴素贝叶斯分类器的空中红外目标抗干扰识别方法研究
-
作者:
杨开
李少毅
张凯
钮赛赛
来源:
飞控与探测
年份:
2019
文献类型 :
期刊
关键词:
概率分布
特征提取
目标识别
朴素贝叶斯分类器
-
描述:
红外诱饵对抗技术的发展使得空战环境日益复杂化,对红外成像制导空空导弹抗干扰目标识别技术提出了更高的要求。红外诱饵的投放使得目标特征的完整性、显著性及稳定性遭到破坏,基于特征融合匹配的统计模式识别方法无法准确识别目标。提出了一种基于朴素贝叶斯分类器的抗干扰目标识别方法,该方法对空战对抗仿真图像数据集进行了特征挖掘,利用实验拟合方法构建了典型特征的概率密度函数模型,构造了朴素贝叶斯分类器,实现了飞机目标和干扰的分类识别。仿真实验结果表明,该方法在已测试的弹道图像数据集下的平均识别正确率达到了81.82%,且能够解决假目标、目标遮挡等抗干扰目标的识别难题。
-
基于多电飞机概念下的飞机电气发展方向
-
作者:
李阳
任殿龙
张超
杨学岭
来源:
雷达与对抗
年份:
2018
文献类型 :
期刊
关键词:
特征提取
微多普勒
经验模态分解
-
描述:
研究经验模态分解方法在飞机微多普勒特性分析中的应用。首先介绍经验模态分解方法的核心思想和算法步骤,然后设计了详细的复信号的经验模态分解算法流程,最后利用实测数据验证了经验模态分解对飞机微多普勒特性分析的有效性。
-
基于ELM的航空发动机故障诊断方法
-
作者:
崔建国
刘宏伟
陶书弘
于明月
高阳
来源:
火力与指挥控制
年份:
2018
文献类型 :
期刊
关键词:
特征提取
极限学习机
故障诊断
小波包
-
描述:
以航空发动机主燃油泵为具体研究对象,提出了一种基于基于小波包能量比与极限学习机(Extreme Learning Machine,ELM)的故障诊断方法。对于某型真实航空发动机,采用振动传感器感知发动机附件机匣的振动信号,对获取的发动机附件机匣的振动信号采用DB3小波包对其进行3层小波包分解,求出第3层各频带信号的能量作为原始信号的特征,构建特征向量。用求得的特征向量建立基于ELM的故障诊断模型,对航空发动机主燃油泵进行故障诊断技术研究。为表明该方法的有效性,还设计了基于BP神经网络的故障诊断模型,并对所构建的特征向量进行了诊断。试验结果表明,基于ELM故障诊断方法可以有效提高故障诊断的速度及准确率,具有很好的工程应用前景。
<
1
2
3
4
5
...
10
11
12
>