首页>
根据【关键词:液压管路,故障诊断,深度学习,Bi/GRU模型】搜索到相关结果 228 条
-
基于深度学习的航空监视方法研究
-
作者:
王艳明
王宝珠
来源:
电子测量技术
年份:
2019
文献类型 :
期刊
关键词:
航空监视
深度学习
人工智能
国土安全
俯视视角
-
描述:
我国是一个幅员辽阔的国家,地理条件复杂,常规的国土安全巡检方法会耗费大量人力物力。为此,提出了一种基于深度学习的航空监视方法,其利用无人机从高空采集图像,并利用卷积神经网络对采集图像进行分类判断,从而对场景进行监视。其目的在于用人工智能的手段,通过无人机代替人工进行巡检,从而提高国土安全监视效率。为此,本文建立了包含10种不同场景的俯视视角的数据库。通过卷积神经网络模型,对不同场景的图像特征进行学习,使得模型可以分辨不同的场景。为了验证本方法的可行性,本文在10种空基视角的数据库上进行了实验,结果显示其分类准确率达到97%。说明本方法可满足安全监视的需求,为实现智能监视提供了思路。
-
一种高效的高分辨率遥感影像飞机目标检测方法
-
作者:
刘媛
姚剑
冯辰
来源:
测绘地理信息
年份:
2020
文献类型 :
期刊
关键词:
高分辨率遥感影像
直线概率图
深度学习
飞机检测
显著性
-
描述:
一种高效的高分辨率遥感影像飞机目标检测方法
-
某型军用飞机下降阶段燃油消耗模型研究
-
作者:
吴祯涛
李学仁
杜军
来源:
信号处理
年份:
2020
文献类型 :
期刊
关键词:
互信息
长短期记忆网络
飞参数据
深度学习
燃油消耗
-
描述:
某型军用飞机下降阶段燃油消耗模型研究
-
SAR图像飞机目标检测识别进展
-
作者:
郭倩
王海鹏
徐丰
来源:
雷达学报
年份:
2020
文献类型 :
期刊
关键词:
飞机识别
合成孔径雷达
散射信息
深度学习
飞机检测
-
描述:
目标检测与识别是高分辨合成孔径雷达(SAR)领域的热点问题。机场上飞机作为一种典型目标,其检测和识别有一定的独特性。该文回顾了SAR图像典型目标检测识别领域技术的发展过程,分析了SAR图像中飞机目标的散射机制及面临的技术难点,阐述了SAR飞机目标检测识别的系统流程、技术路线和关键科学问题,对基于传统与基于深度学习两个方面的飞机目标检测识别的研究进展进行了归纳总结,并讨论了各类方法的特点及存在的问题,展望了未来的发展趋势。该文认为如何将深度学习与目标电磁散射机理结合、提高网络或模型的泛化能力是提升SAR图像中目标检测识别精度的关键,并给出了一种基于散射信息与深度学习融合的飞机目标检测方法。
-
基于深度学习的航空发动机传感器故障检测
-
作者:
刘云龙
谢寿生
郑晓飞
边涛
来源:
传感器与微系统
年份:
2018
文献类型 :
期刊
关键词:
飞参数据
深度学习
故障检测
深度置信网络
航空发动机传感器
-
描述:
针对传统反向传播(BP)神经网络和支持向量机(SVM)存在的过拟合、维数灾难、参数选择困难等问题,提出了一种基于深度学习算法的航空发动机传感器故障检测方法。对发动机参数记录仪采集的多维数据进行预处理,建立基于深度置信网络(DBN)的故障检测模型,利用预处理后的数据对检测模型进行训练,经过DBN故障检测模型逐层特征学习实现了传感器故障检测。仿真结果表明:在无人工特征提取和人工特征提取的情况下,基于DBN故障检测的准确率均高于BP神经网络和SVM模型。
-
遥感图像飞机目标高效搜检深度学习优化算法
-
作者:
郭琳
秦世引
来源:
北京航空航天大学学报
年份:
2019
文献类型 :
期刊
关键词:
停机坪与跑道分割
深度神经网络
深度学习
飞机目标检测
大幅面遥感图像
-
描述:
为了实现大幅面遥感图像中飞机目标的高效检测与准确定位,通过深度神经网络(DNN)的级联组合,提出了一种新颖的搜寻与检测相集成的飞机目标高效检测算法。首先,运用高性能的端到端DNN网络,进行停机坪与跑道区域的像素级高效精准分割,从而大幅度缩小飞机目标的搜索范围,以降低虚警发生概率,完成飞机目标候选检测区域的快速搜寻。然后,针对分割所得停机坪与跑道区域,借助手工数据集对YOLO网络模型进行迁移式强化训练,一方面可以弥补训练集在样本类型与数据规模上的不足,另一方面借助YOLO网络的强时效性优势对飞机目标的位置进行回归求解,可以显著提高飞机目标的检测效率。停机坪与跑道区域分割DNN网络在分割精度与时效性上具有显著优势,而迁移式强化训练YOLO网络不仅具有很高的检测效率,在检测精度上也能保持良好的性能。通过一系列综合实验与对比分析,验证了提出的搜寻与检测相集成的DNN级联组合式飞机目标高效检测算法的性能优势。
-
基于改进差分时域特征和深度学习优化的航空发动机剩余寿命预测算法
-
作者:
高峰
曲建岭
袁涛
高峰娟
来源:
电子测量与仪器学报
年份:
2019
文献类型 :
期刊
关键词:
航空发动机
长短时记忆网络
寿命预测
深度学习
差分时域特征
-
描述:
实现航空发动机剩余寿命的准确预测对于保证飞行安全和提高维修效率具有重要意义,但现有的预测算法往往只是浅层结构,且对各传感器参数之间的相互关系缺乏关联性考虑,限制了对发动机参数信息的深度挖掘。在深度学习理论的基础上,着重考虑不同传感器之间的参数关系,引入差分时域特征扩充特征集,构建了基于长短时记忆网络的寿命预测模型DTF-LSTM。在C-MAPSS数据集上的实验结果表明,该算法相较于其他深度学习算法具有更低的均方根误差(RMSE)值,可以有效实现发动机剩余寿命预测。
-
通用航空飞行员异常行为检测及预警系统设计与实现
-
作者:
陈农田
满永政
袁浩
董俊杰
宁威峰
李俊辉
来源:
实验室研究与探索
年份:
2022
文献类型 :
期刊
关键词:
检测预警
深度学习
改进YOLOv3
图像视频采集
驾驶异常行为
-
描述:
为了实现通用航空飞行安全精准智慧监管,以通用航空飞行员驾驶舱异常行为图像和视频数据为基础,设计了通用航空飞行员异常行为检测预警系统。该系统采用高精度摄像头实现通用航空器驾驶舱飞行员行为动作图像和视频捕获,结合改进的YOLOv3深度学习算法开展飞行员异常行为识别检测并建立声音和灯光告警触发机制,实现飞行员异常行为检测预警可视化。通过树莓派将预警信息上传云端,同步实现图像和视频数据实时存储及可追溯性。经实验测试验证,驾驶舱中飞行员抽烟行为检测准确率达88%、打电话行为检测准确率达92%,表明该系统能稳定且有效实现面向通用航空运行安全的飞行员异常行为检测预警,为下一步开展通用航空器机载原型系统适航工程验证奠定基础。
-
一种用于预测航空遥感影像光谱信息的深度学习方法
-
作者:
郝明达
普运伟
周家厚
杨洋
陈如俊
来源:
遥感信息
年份:
2022
文献类型 :
期刊
关键词:
高光谱遥感重建
深度学习
密集卷积神经网络
光谱超分辨率
自适应注意力机制
-
描述:
为从航空RGB遥感影像中预测高光谱影像中有用的地物属性信息,提高航空RGB遥感影像光谱的分辨率,提出一种轻量型的深度学习网络模型。所提模型组合了密集卷积神经网络架构和自适应注意力机制的优点,构建了一种新型密集注意力卷积神经网络模型(dense attention convolutional neural network model, DACNN model)。在真实的多模态AeroRIT场景影像和同源的雄安航空遥感影像上的多种定量对比实验结果表明,所提出的网络架构可以生成与原始高光谱遥感影像相似的空间特征和光谱特征,并且所需参数量显著降低,具有较好的性能和适用性,且所提模型架构方法具有一定的通用性。
-
航空发动机外形点云的特征分割方法
-
作者:
闫杰琼
周来水
胡少乾
文思扬
来源:
光学学报
年份:
2022
文献类型 :
期刊
关键词:
航空发动机
机器视觉
外形点云
深度学习
特征分割
-
描述:
目前我国存在较多外购发动机的情况,外购发动机存在只有实物及安装尺寸等信息,而没有三维数字化模型的问题,这给飞机与发动机的装配协调设计带来较大困难,因此飞机设计部门对快速重构航空发动机的外形几何模型提出了迫切需求。为了使重建出的发动机外形几何模型尽可能地保留准确的结构特征,提出了一种基于深度学习的航空发动机外形点云特征分割方法,该方法将整体点云分割成特征数据与非特征数据,这有利于后续采用不同的方法重建出各种复杂的结构特征。设计了一种迭代密度均衡算法用于构建特征分割数据集,该算法为特征分割网络的训练、测试和性能评估提供基础;设计了一种特征分割网络,从多尺度局部表面片中收集形状结构和局部邻域信息,用于判断其中心是否是特征点。将训练好的特征分割网络模型应用于发动机外形点云,验证结果表明,特征分割精度达到95.16%,所提算法实现了高精度语义分割。
<
1
2
3
...
12
13
14
...
21
22
23
>