首页>
根据【关键词:液压管路,故障诊断,深度学习,Bi/GRU模型】搜索到相关结果 228 条
-
基于Bi/GRU模型的航空发动机外部液压管路故障诊断研究
-
作者:
黄续芳
赵平
冯铃
张丽
来源:
机床与液压
年份:
2023
文献类型 :
期刊
关键词:
液压管路
故障诊断
深度学习
Bi/GRU模型
-
描述:
针对航空液压管路故障信号含有噪声干扰导致管路故障识别困难的问题,提出一种基于双向门控循环单元(Bi/GRU)的深度学习液压管路故障诊断方法。由Bi/GRU神经网络模型综合液压管路数据进行时序特征提取
-
多头注意力驱动的航空高速轴承故障诊断方法
-
作者:
王兴
张晗
朱家正
林建波
杜朝辉
来源:
振动与冲击
年份:
2023
文献类型 :
期刊
关键词:
多头注意力
航空轴承
故障诊断
深度学习
-
描述:
模块对原始振动信号进行特征提取;然后引入多头注意力模块,使网络同时注意并融合不同表示子空间的信息以提高故障特征的显著性水平;最后利用全连接模块和Softmax分类器对提取的特征进行高速轴承故障诊断。试验
-
某型飞机腹板裂纹分析及改装设计
-
作者:
彭军
郭晨阳
张勇
张赟
杨欣毅
来源:
系统仿真技术
年份:
2018
文献类型 :
期刊
关键词:
航空发动机
故障诊断
深度学习
神经网络
-
描述:
引入深度学习理论,利用深度置信网络算法对由仿真软件生成的航空发动机部件性能衰退故障数据进行求解。与反向传播(BP)神经网络算法和径向基函数(RBF)神经网络算法的比较结果表明:虽然深度学习训练耗费较长时间,但是深度置信网络算法结构克服了浅层网络算法结构的不足,其计算结果能够达到更高诊断精度,并具有较好的抗噪性能。
-
基于多传感器融合卷积神经网络的航空发动机轴承故障诊断
-
作者:
杨洁
万安平
王景霖
单添敏
缪徐
李客
左强
来源:
中国电机工程学报
年份:
2022
文献类型 :
期刊
关键词:
航空发动机
卷积神经网络
多传感器信息融合
故障诊断
深度学习
-
描述:
航空发动机轴承进行故障诊断。该模型采用一维卷积神经网络(one dimensional convolutional neural network,1D-CNN)对实验获取的某航空发动机的轴承故障振动
-
基于多传感器融合卷积神经网络的航空发动机轴承故障诊断
-
作者:
杨洁
万安平
王景霖
单添敏
缪徐
李客
左强
来源:
中国电机工程学报
年份:
2022
文献类型 :
期刊
关键词:
航空发动机
卷积神经网络
多传感器信息融合
故障诊断
深度学习
-
描述:
航空发动机轴承进行故障诊断。该模型采用一维卷积神经网络(one dimensional convolutional neural network,1D-CNN)对实验获取的某航空发动机的轴承故障振动
-
基于深度学习的航空发动机故障融合诊断
-
作者:
车畅畅
王华伟
倪晓梅
洪骥宇
来源:
北京航空航天大学学报
年份:
2018
文献类型 :
期刊
关键词:
航空发动机
故障诊断
深度学习
抗干扰能力
决策融合
-
描述:
通过对航空发动机故障诊断,能够正确判断各部件工作状态,快速确定维修方案,保证飞行安全。在结合深度信念网络和决策融合理论的基础上,提出了基于深度学习的航空发动机故障融合诊断模型。该模型通过分析发动机
-
基于深度学习的航空发动机齿轮故障诊断
-
作者:
万安平
杨洁
王景霖
陈挺
缪徐
黄佳湧
杜翔
来源:
振动.测试与诊断
年份:
2022
文献类型 :
期刊
关键词:
航空发动机
卷积神经网络
多传感器信息融合
故障诊断
深度学习
-
描述:
传统的机械故障诊断方法需要将采集的故障波信号进行信号处理,再结合神经网络进行特征提取与分类,不仅流程复杂、耗费时间,而且识别准确率不高。针对此问题,采用一维卷积神经网络(one
-
基于RDK-ELM的航空发动机控制系统故障诊断
-
作者:
陈虹潞
黄向华
来源:
航空发动机
年份:
2021
文献类型 :
期刊
关键词:
航空发动机
极限学习机
控制系统
简约改进
故障诊断
深度学习
-
描述:
为保持较高诊断正确率,缩短训练时间,满足航空发动机故障诊断对于实时性和高诊断率的需求,提出1种对深度核极限学习机的简约改进方法。输入数据中随机选取部分数据作为支持向量,结合深度学习网络的多层结构
-
基于深度学习的航空传感器故障诊断方法
-
作者:
郑晓飞
郭创
姚斌
冯华鑫
来源:
计算机工程
年份:
2018
文献类型 :
期刊
关键词:
信号重构
故障诊断
深度学习
航空传感器
深度置信网络
故障隔离
-
描述:
为解决传统神经网络进行传感器故障诊断时存在的过拟合、泛化能力有限等问题,提出一种基于深度置信网络观测器的航空传感器故障诊断方法。利用深度置信网络替代浅层神经网络,在优化网络结构的基础上,给出深度置信
-
基于残差网络的航空发动机滚动轴承故障多任务诊断方法
-
作者:
康玉祥
陈果
尉询楷
潘文平
王浩
来源:
振动与冲击
年份:
2022
文献类型 :
期刊
关键词:
滚动轴承
故障诊断
深度学习
多任务
残差网络
损伤大小
-
描述:
针对当前基于深度学习的航空发动机滚动轴承故障诊断技术诊断任务单一的问题,提出一种基于多任务残差网络的滚动轴承故障诊断方法,该方法采用残差网络为深层特征提取与共享主框架,建立能够同时进行故障诊断