关键词
考虑推力意图的航空器连续爬升垂直剖面预测
作者: 杜卓铭     张军峰     苗洪连     王斌   来源: 北京航空航天大学学报 年份: 2024 文献类型 : 期刊 关键词: 空中交通管理   性能模型   连续爬升   航迹预测   推力意图  
描述: 顶点(TOC)的时间和距离的误差。结果表明:采用所提预测方法可以将到达TOC时间平均绝对误差控制在1 min内;与不考虑推力意图的预测方法相比,可以降低到达TOC时间平均绝对误差约52%。
基于改进Faster R-CNN的SAR图像飞机检测算法
作者: 李广帅   苏娟   李义红   来源: 北京航空航天大学学报 年份: 2020 文献类型 : 期刊 关键词: R   CNN   上下文信息   Align   浅层特征增强   Faster   飞机检测   ROI  
描述: 在合成孔径雷达(Synthetic Aperture Radar,SAR)图像分析领域,飞机目标作为一种重要目标,对其的检测越来越受到重视。针对传统SAR图像飞机检测算法需要人工设计特征且鲁棒性较差的问题,提出一种基于改进Faster R-CNN的SAR图像飞机检测算法。本文制作了一个SAR图像飞机数据集SAD(SAR Aircraft Dataset),以Faster R-CNN为检测框架,利用改进k-means算法设计更合理的先验锚点框,以适应飞机目标的形状特点;借鉴inception模块思想,设计多路不同尺寸卷积核以扩展网络宽度,增强对浅层特征的表达;分析残差网络Layer5层的特征输出具有更大的感受野,对其上采样后进行特征融合以利用更多的上下文信息;同时引入Mask R-CNN算法中提出的RoI Align单元,消除特征图与原始图像的映射偏差。实验结果表明,相比原始的Faster R-CNN算法,本文提出的改进的Faster R-CNN检测算法在SAR图像飞机数据集上平均检测精度提高了7.4%,同时保持了较快的检测速度。
基于改进Faster R-CNN的SAR图像飞机检测算法
作者: 李广帅   苏娟   李义红   来源: 北京航空航天大学学报 年份: 2020 文献类型 : 期刊 关键词: R   CNN   上下文信息   Align   浅层特征增强   Faster   飞机检测   ROI  
描述: 在合成孔径雷达(Synthetic Aperture Radar,SAR)图像分析领域,飞机目标作为一种重要目标,对其的检测越来越受到重视。针对传统SAR图像飞机检测算法需要人工设计特征且鲁棒性较差的问题,提出一种基于改进Faster R-CNN的SAR图像飞机检测算法。本文制作了一个SAR图像飞机数据集SAD(SAR Aircraft Dataset),以Faster R-CNN为检测框架,利用改进k-means算法设计更合理的先验锚点框,以适应飞机目标的形状特点;借鉴inception模块思想,设计多路不同尺寸卷积核以扩展网络宽度,增强对浅层特征的表达;分析残差网络Layer5层的特征输出具有更大的感受野,对其上采样后进行特征融合以利用更多的上下文信息;同时引入Mask R-CNN算法中提出的RoI Align单元,消除特征图与原始图像的映射偏差。实验结果表明,相比原始的Faster R-CNN算法,本文提出的改进的Faster R-CNN检测算法在SAR图像飞机数据集上平均检测精度提高了7.4%,同时保持了较快的检测速度。
融合注意力和多尺度特征的航空发动机缺陷检测
作者: 赵崇林   朱江   胡永进   李祖泽   王鹏举   谢涛   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   YOLOv5   深度学习   缺陷检测  
描述: 损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
融合注意力和多尺度特征的航空发动机缺陷检测
作者: 赵崇林   朱江   胡永进   李祖泽   王鹏举   谢涛   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   YOLOv5   深度学习   缺陷检测  
描述: 损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
基于Trans/Attention的飞行区航空器监视数据融合方法
作者: 王兴隆   尹昊   丁俊峰   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 场面监视雷达   注意力机制   Transformer   数据融合   广播式自动相关监视  
描述: 结果表明,该方法有效降低了单一监视源的监视误差,且融合效果优于基于注意力机制的长短期记忆网络、循环神经网络和扩展卡尔曼滤波融合方法,平均绝对误差分别提升了2.20%、14.32%和33.94%。
融合注意力和多尺度特征的航空发动机缺陷检测
作者: 赵崇林   朱江   胡永进   李祖泽   王鹏举   谢涛   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   YOLOv5   深度学习   缺陷检测  
描述: 损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
基于Trans/Attention的飞行区航空器监视数据融合方法
作者: 王兴隆   尹昊   丁俊峰   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 场面监视雷达   注意力机制   Transformer   数据融合   广播式自动相关监视  
描述: 结果表明,该方法有效降低了单一监视源的监视误差,且融合效果优于基于注意力机制的长短期记忆网络、循环神经网络和扩展卡尔曼滤波融合方法,平均绝对误差分别提升了2.20%、14.32%和33.94%。
融合注意力和多尺度特征的航空发动机缺陷检测
作者: 赵崇林   朱江   胡永进   李祖泽   王鹏举   谢涛   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   YOLOv5   深度学习   缺陷检测  
描述: 损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
< 1
Rss订阅