关键词
联合多尺度特征和注意力机制的遥感影像飞机目标检测
作者: 徐佰祺   江刚武   刘建辉   王鑫   魏祥坡   余培东   来源: 测绘科学技术学报 年份: 2021 文献类型 : 期刊 关键词: YOLO   注意力机制   特征融合   遥感影像   V4算法   飞机目标检测  
描述: 针对遥感影像飞机目标尺寸小、特征不明显的问题,在YOLO V4的基础上,提出一种联合多尺度特征和注意力机制的遥感影像飞机目标检测方法。该方法扩大了特征融合时尺度的范围,增强了对低层特征和小目标信息的提取。通过引入注意力机制进行特征融合,为每个通道的特征赋予不同权重,学习不同通道间特征的相关性。在RSOD-Dataset数据集上进行对比实验,实验结果表明该方法与相关算法相比,具有更高的检测精度。
基于两阶段迁移学习的Multi-scale SE-ResNet50深度卷积神经网络的多标签航空图像分类问题研究
作者: 刘乙萱   苏鑫   来源: 数学的实践与认识 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   ResNet50   航空图像分类   多标签   多尺度特征融合   迁移学习  
描述: 的提取;利用两阶段迁移学习优化模型初始化参数,进一步提高模型精度和泛化能力.实验结果表明,算法在UCM多标签数据集上的macro-F1为98.4%,分别高于MobileNet v2,VGG16
基于多尺度融合预测模型的航空发动机剩余寿命预测
作者: 刘纳川   郭建胜   张晓丰   余稼洋   解涛   来源: 兵器装备工程学报 年份: 2023 文献类型 : 期刊 关键词: 静态协变量编码器   分位数   剩余寿命   LSTM神经网络   多头注意力机制   门控残差机制  
描述: 针对大多数基于数据驱动的航空发动机剩余寿命预测方法未细分其退化过程与复杂输入数据之间的关系,无法准确识别和提取关键特征的问题。提出一种基于多尺度融合预测模型(MSF)的航空发动机剩余寿命预测方法。该
基于卷积神经网络的遥感图像飞机检测
作者: 张义德   胡长雨   胡春育   来源: 光电子技术 年份: 2017 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   微调   迁移学习   飞机检测  
描述: 提出一种CNN的遥感图像飞机检测的方法。首先获得预训练好的CNN,然后通过参数迁移获得五层卷积层模型参数,接着利用遥感图像对第五层卷积层进行微调获得一个特征提取器。将特征提取器用于提取遥感图像训练集的深度特征,训练可变形部件检测模型。实验表明,提出的方法大大提高了遥感图像飞机目标检测精度,准确率达96%以上。
基于多结构卷积神经网络的高分遥感影像飞机目标检测
作者: 姚相坤   万里红   霍宏   方涛   来源: 计算机工程 年份: 2017 文献类型 : 期刊 关键词: 特征提取   卷积神经网络   多结构网络   目标检测   高分遥感影像  
描述: 传统的遥感影像目标检测方法大多利用人工提取特征,难以用于背景复杂的高分辨率遥感影像。针对该问题,构建一种多结构卷积神经网络模型(MSCNN)自动学习目标特征。通过改变卷积滤波器尺寸、数量以及网络层数,分别设计4种不同结构的CNN以提取目标从低层、中层到高层不同尺度的特征信息,并将4种CNN输出采用串行方式连接并输入到BP神经网络分类器进行训练。在检测阶段采用滑动窗口方法进行目标搜索。对高分辨遥感影像中飞机的检测实验结果表明,MSCNN在虚警率和召回率上较4种单一结构的CNN具有明显的检测优势,召回率平均提升6%,虚警率平均降低3%。对油罐的检测结果进一步表明,MSCNN可以推广到对遥感影像其他目标的检测。
遥感图像飞机目标分类的卷积神经网络方法
作者: 周敏   史振威   丁火平   来源: 中国图象图形学报 年份: 2017 文献类型 : 期刊 关键词: 卷积神经网络   深度学习   可见光遥感   飞机   分类  
描述: 分类问题。方法在缺乏公开数据集的情况下,收集了真实可见光遥感图像中的8种飞机数据,按大致4∶1的比例分为训练集和测试集,并对训练集进行合理扩充。然后针对遥感图像与飞机分类的特殊性,结合深度学习卷积
基于深度学习的离场航空器滑行时间预测(英文)
作者: 李楠   焦庆宇   朱新华   王少聪   来源: Transactions of Nanjing University of Aeronautics and Astronautics 年份: 2021 文献类型 : 期刊 关键词: 卷积神经网络   场面运行   滑行时间   深度学习   航空运输  
描述: 随着航班数量的不断增加,机场协同决策系统(Airport collaborative decision-making,A-CDM)的使用也越来越广泛。滑行时间预测的准确性对A-CDM计算离场航空器起飞排序队列和给出准确的撤轮挡时间具有重要的作用。本文提出一种基于时间-空间-环境数据的深度学习模型(Spatio-temporal-environment deep learning model,STEDL)来提高滑行时间预测的准确性。该模型由时间-流量变量(机场实际容量,场面航空器数量,时间段)、空间变量(滑行距离)、外部环境变量(天气,流控信息,跑道运行模式,机型)3部分组成。使用STEDL模型对香港机场离场航空器滑行时间进行预测验证。实验结果显示,STEDL模型预测准确率为95.4%,预测精度明显优于其他机器学习算法。
基于深度神经网络的遥感图像飞机目标检测
作者: 李文斌   何冉   来源: 计算机工程 年份: 2021 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   目标检测   密度聚类   像素级标签  
描述: 。实验结果表明,DC-DNN模型对于遥感图像飞机目标检测的准确率、召回率和F1值分别为95.78%、98.98%和0.973 5,相比WS-DNN、R-FCN等模型具有更好的检测性能和泛化能力。
基于深度神经网络的遥感图像飞机目标检测
作者: 李文斌   何冉   来源: 计算机工程 年份: 2021 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   目标检测   密度聚类   像素级标签  
描述: 。实验结果表明,DC-DNN模型对于遥感图像飞机目标检测的准确率、召回率和F1值分别为95.78%、98.98%和0.973 5,相比WS-DNN、R-FCN等模型具有更好的检测性能和泛化能力。
基于编解码网络的航空影像像素级建筑物提取
作者: 陈凯强   高鑫   闫梦龙   张跃   孙显   来源: 遥感学报 年份: 2021 文献类型 : 期刊 关键词: 卷积神经网络   建筑物提取   深度学习   遥感   航空影像  
描述: 建筑物提取在城市规划等土地利用分析中发挥着重要作用。用于提取建筑物的传统方法通常基于手工特征和分类器,导致精度较低。本文基于编解码结构的卷积神经网络CNN (Convolutional Neural Networks),自主学习多级的和具有区分度的特征来更好地辨识建筑物和背景,实现航空影像中的像素级建筑物提取。该网络由编码子网络和解码子网络两部分组成,编码子网络对输入图像进行空间分辨率压缩,完成特征提取;解码子网络从特征中提升空间分辨率,完成像素级的建筑物提取。此外,本文使用视野增强FoVE (Field-of-View Enhancement)方法减轻边缘现象(切片边缘附近的建筑物提取精度通常低于中心区域附近的精度)的影响,并分别在两个建筑物提取标准数据集上的实验表明,编解码卷积神经网络能有效实现像素级建筑物提取,FoVE能有效提高建筑物提取准确率;通过改变预测时切片大小和重叠度,分析其对建筑物提取结果的影响,揭示了FoVE的饱和性。
< 1 2 3 ... 5 6 7 ... 115 116 117
Rss订阅