首页>
根据【关键词:数字化检测,卡箍装配质量,图像处理,飞机线束,螺纹螺距 】搜索到相关结果 64 条
航空影像辅助的机载LiDAR植被点云分类
作者:
王果
王强
张振鑫
徐棒
赵光兴
来源:
激光与光电子学进展
年份:
2021
文献类型 :
期刊
关键词:
植被点云分类
图像处理
机载激光雷达
融合
航空影像
描述:
针对从非地面点云数据中难以自动分类植被和建筑物的问题,提出一种航空影像辅助的机载LiDAR(Light Detection and Ranging)植被点云分类方法。根据植被的光谱特征明显不同于其他地物这一特点,在生成数字正射影像的基础上,首先利用K均值(K-means)聚类算法对影像进行聚类和图像增强,然后将增强后的影像和对应区域的点云数据进行融合,最后通过影像处理结果对机载LiDAR植被点云进行分类。选取某城市的机载LiDAR植被点云数据和航空影像进行实验,定量分析结果显示所提方法的总分类精度为96.47%,Kappa系数为0.9248,该方法能够达到点云中植被自动分类的目的。
基于注意力金字塔网络的航空影像建筑物变化检测
作者:
田青林
秦凯
陈俊
李瑶
陈雪娇
来源:
光学学报
年份:
2021
文献类型 :
期刊
关键词:
注意力机制
图像处理
变化检测
空洞卷积
特征金字塔
描述:
针对遥感图像语义分割中存在对多尺度目标的漏检和分割边界粗糙等问题,提出了一种基于注意力金字塔网络的航空影像建筑物变化检测方法。该方法采用编码-解码结构,在编码阶段使用ResNet101 作为基础网络来
基于特征融合与软判决的遥感图像飞机检测
作者:
朱明明
许悦雷
马时平
李帅
马红强
来源:
光学学报
年份:
2019
文献类型 :
期刊
关键词:
区域卷积神经网络
特征融合
图像处理
软判决
飞机检测
描述:
传统的非极大值抑制方法。实验结果表明,所提方法能够准确快速地检测到飞机,得到检测率为94.25%、虚警率为5.5%、平均运行时间为0.1 6 s的实验结果。与现有的其他检测方法相比,所提方法的各项指标均得到显著提升。
基于特征融合与软判决的遥感图像飞机检测
作者:
朱明明
许悦雷
马时平
李帅
马红强
来源:
光学学报
年份:
2019
文献类型 :
期刊
关键词:
区域卷积神经网络
特征融合
图像处理
软判决
飞机检测
描述:
传统的非极大值抑制方法。实验结果表明,所提方法能够准确快速地检测到飞机,得到检测率为94.25%、虚警率为5.5%、平均运行时间为0.1 6 s的实验结果。与现有的其他检测方法相比,所提方法的各项指标均得到显著提升。
基于温岭市二类调查的航空影像正射纠正技术研究
作者:
林辉
来源:
西南林业大学学报(自然科学)
年份:
2019
文献类型 :
期刊
关键词:
图像处理
数字摄影测量
UCX
正射纠正
LPS
描述:
检查点提取地形图和影像的对应坐标进行误差计算,平均总误差仅为1 .249 m,可以满足温岭市森林资源二类调查的需要;该方法解决了航空影像数据量大、数量多、处理时间长、DEM使用等难题,对实际生产具有重要意义。
基于半监督学习的遥感飞机图像检测方法
作者:
杜泽星
殷进勇
杨建
来源:
激光与光电子学进展
年份:
2020
文献类型 :
期刊
关键词:
遥感图像
图像处理
目标检测
半监督学习
生成式对抗网络
描述:
基于半监督学习的遥感飞机图像检测方法
基于温岭市二类调查的航空影像正射纠正技术研究
作者:
林辉
来源:
西南林业大学学报(自然科学)
年份:
2019
文献类型 :
期刊
关键词:
图像处理
数字摄影测量
UCX
正射纠正
LPS
描述:
检查点提取地形图和影像的对应坐标进行误差计算,平均总误差仅为1 .249 m,可以满足温岭市森林资源二类调查的需要;该方法解决了航空影像数据量大、数量多、处理时间长、DEM使用等难题,对实际生产具有重要意义。
基于半监督学习的遥感飞机图像检测方法
作者:
杜泽星
殷进勇
杨建
来源:
激光与光电子学进展
年份:
2020
文献类型 :
期刊
关键词:
遥感图像
图像处理
目标检测
半监督学习
生成式对抗网络
描述:
基于半监督学习的遥感飞机图像检测方法
基于点特征检测的农业航空遥感图像配准算法
作者:
陆健强
李旺枝
兰玉彬
何秉鸿
林佳翰
来源:
农业工程学报
年份:
2021
文献类型 :
期刊
关键词:
数据降维
算法
图像配准
图像处理
点特征检测
遥感
描述:
精准定位,在求取特征点的模值与方向基础上,采用奇异值分解方法进行矩阵优化,实现数据降维再重构。试验结果表明,SNS算法与经典算法相比,配准速度平均提高5.01 %,配准精度均方根误差平均降低1
基于深度学习的光学遥感图像飞机检测算法
作者:
董永峰
仉长涛
汪鹏
冯哲
来源:
激光与光电子学进展
年份:
2021
文献类型 :
期刊
关键词:
遥感图像
卷积神经网络
图像处理
目标检测
深度学习
Mask
RCNN算法
描述:
光学遥感图像目标检测一直都是遥感领域研究的热点之一,但现有的检测方法对背景复杂且尺寸较小的目标检测准确率不高。针对以上问题,提出了一种以Mask-RCNN为基础框架的目标检测方法。该算法以ResNet50为特征提取网络并在此基础之上利用特征重用技术来更好地提取目标的语义特征,且针对不同类型的飞机尺寸比例不固定等特点,设计了一组更加合适的候选框尺度集合。实验结果证明,该方法与以往常用的检测算法相比在小物体检测上拥有更高的检测精度。