关键词
基于深度学习的航空电磁反演方法研究
作者: 李思平.   来源: 长江大学 年份: 2023 文献类型 : 学位论文 关键词: 卷积神经网络   深度学习   ResNetINV网络   航空电磁反演  
描述: 基于深度学习的航空电磁反演方法研究
基于无锚解耦头的航空图像旋转目标检测方法研究
作者: 康宇哲     冯桂林     张易诚     康逸云     沈炜   来源: 计算机时代 年份: 2023 文献类型 : 期刊 关键词: 深度学习   椭圆中心采样   解耦合检测   无锚点  
描述: 解耦合目标检测头将边界框回归任务与目标分类任务分离以提高检测精度。实验表明,所提方法在DOTA和HRSC2016数据集上分别达到了75.2%和89.1%的mAP,满足了精确检测的要求。
样本不平衡数据集下航空发动机滚动轴承故障智能诊断方法研究
作者: 王昭旺     王存俊     徐自力.   来源: 第十五届全国振动理论及应用学术会议摘要集 年份: 2023 文献类型 : 会议论文 关键词: 加权支持向量机   智能故障诊断   深度学习   样本不平衡  
描述: 样本不平衡数据集下航空发动机滚动轴承故障智能诊断方法研究
基于多模态数据融合的湿滑道面飞机起降安全风险评估方法研究
作者: 郭旭周     吴红兰     徐舒     石留宾.   来源: 第十六届智慧城市大会论文集 年份: 2023 文献类型 : 会议论文 关键词: 道面湿滑   飞机起降风险评估   深度学习   数据融合  
描述: 基于多模态数据融合的湿滑道面飞机起降安全风险评估方法研究
基于堆栈自编码器和DeepAR的航空发动机剩余寿命预测
作者: 李浩   王卓健   李哲   陈煊   李园   来源: 推进技术 年份: 2023 文献类型 : 期刊 关键词: 航空发动机   寿命预测   深度学习   预测模型   数据融合  
描述: 针对现有航空发动机剩余寿命预测大多基于单点预测模式,不能准确给出预测结果置信区间的问题,提出了一种基于堆栈自编码器结合DeepAR模型的概率分布预测模型。首先,堆栈自编码器通过无监督式深度学习
融合注意力和多尺度特征的航空发动机缺陷检测
作者: 赵崇林   朱江   胡永进   李祖泽   王鹏举   谢涛   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   YOLOv5   深度学习   缺陷检测  
描述: 损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
基于深度学习的航空发动机磨损部位识别方法
作者: 苗慧慧   曹桂松   孙智君   康玉祥   马佳丽   陈果   来源: 润滑与密封 年份: 2023 文献类型 : 期刊 关键词: 航空发动机   一维卷积残差网络   能谱分析   深度学习   磨损  
描述: 针对航空发动机润滑系统中摩擦副部件复杂、磨损颗粒能谱监测元素众多,靠人工经验难于进行磨损部位精确识别的问题,提出一种基于深度学习的航空发动机润滑系统磨损部位识别方法。该方法应用一维卷积核为计算单元
时间域航空电磁激发极化参数三维反演研究
作者: 满开峰   殷长春   刘云鹤   孙思源   熊彬   来源: 地球物理学报 年份: 2023 文献类型 : 期刊 关键词: Pearson相关约束   激发极化效应   时间域航空电磁   深度学习   3D反演  
描述: Pearson相关性约束和深度学习算法相结合的时间域航空电磁激发极化参数反演策略.该反演策略首先基于深度学习预测时间域航空电磁激电参数,进而给时间常数和频率相关系数一个较小的约束范围后再反演电阻率和极化率,由此
基于堆栈自编码器和DeepAR的航空发动机剩余寿命预测
作者: 李浩   王卓健   李哲   陈煊   李园   来源: 推进技术 年份: 2023 文献类型 : 期刊 关键词: 航空发动机   寿命预测   深度学习   预测模型   数据融合  
描述: 针对现有航空发动机剩余寿命预测大多基于单点预测模式,不能准确给出预测结果置信区间的问题,提出了一种基于堆栈自编码器结合DeepAR模型的概率分布预测模型。首先,堆栈自编码器通过无监督式深度学习
融合注意力和多尺度特征的航空发动机缺陷检测
作者: 赵崇林   朱江   胡永进   李祖泽   王鹏举   谢涛   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   YOLOv5   深度学习   缺陷检测  
描述: 损失,实现对缺陷目标快速、准确地定位和识别。实验结果表明,本文算法检测缺陷的平均精确度达到了89.7%,较基准网络提升了6.3%,训练后的模型大小仅为14.0M。因此,所提方法可以有效地检测航空发动机的主要缺陷。
< 1 2 3 4 5 6 ... 14 15 16
Rss订阅