关键词
基于深层卷积神经网络电动飞机主驱动电机故障诊断方法
作者: 杨柏   关焕新   王森   杨亮   王鹤蓉   来源: 微电机 年份: 2020 文献类型 : 期刊 关键词: 卷积神经网络   故障诊断   主驱动电机   残差模块  
描述: 为解决电动飞机主驱动电机故障诊断方法因电机结构复杂、信号非平稳与机械大数据等因素引起的诊断困难问题,提出了基于深层卷积神经网络的电动飞机主驱动电机故障诊断新方法。首先研究了SoftMax分类器判断
基于小样本多背景下的飞机图像识别研究
作者: 兰天   李博   杨敬宝   来源: 电脑编程技巧与维护 年份: 2021 文献类型 : 期刊 关键词: HoG特征   卷积神经网络   飞机图像识别  
描述: 环境影响,当图像中含有其他显著性目标时易失效,若进行目标分割运算量巨大,在现代化防控体系中,需要既快又好的方法精准识别飞机的机型。随着深度学习的出现,众多模式识别领域中问题得到解决,但深度学习需要大量样本对
基于可变形卷积神经网络的遥感图像飞机目标检测
作者: 李明阳   胡显   雷宏   来源: 国外电子测量技术 年份: 2021 文献类型 : 期刊 关键词: 卷积神经网络   遥感影像   可变形卷积   飞机检测  
描述: 遥感图像中的飞机检测在民用和军事应用中都是一个重要且富有挑战性的任务。针对现有目标检测算法在复杂场景中旋转不变性差的问题,提出了一种多尺度可变形卷积神经网络用以检测飞机目标。该方法通过将可
基于可变形卷积神经网络的遥感图像飞机目标检测
作者: 李明阳   胡显   雷宏   来源: 国外电子测量技术 年份: 2021 文献类型 : 期刊 关键词: 卷积神经网络   遥感影像   可变形卷积   飞机检测  
描述: 遥感图像中的飞机检测在民用和军事应用中都是一个重要且富有挑战性的任务。针对现有目标检测算法在复杂场景中旋转不变性差的问题,提出了一种多尺度可变形卷积神经网络用以检测飞机目标。该方法通过将可
基于优化CNN的航空液压管路卡箍故障诊断
作者: 窦金鑫   薛政坤   于晓光   范玉鑫   刘忠鑫   杨同光   来源: 机床与液压 年份: 2021 文献类型 : 期刊 关键词: 液压管路卡箍   卷积神经网络   故障诊断   优化变分模态分解  
描述: 针对航空发动机液压卡箍-管路系统具有高度复杂性,导致卡箍振动信号存在非线性、非平稳性,从而难以提取出卡箍故障状态有效信息的问题,提出一种基于优化变分模态分解(VMD)与卷积神经网络(CNN)的卡
基于小样本多背景下的飞机图像识别研究
作者: 兰天   李博   杨敬宝   来源: 电脑编程技巧与维护 年份: 2021 文献类型 : 期刊 关键词: HoG特征   卷积神经网络   飞机图像识别  
描述: 环境影响,当图像中含有其他显著性目标时易失效,若进行目标分割运算量巨大,在现代化防控体系中,需要既快又好的方法精准识别飞机的机型。随着深度学习的出现,众多模式识别领域中问题得到解决,但深度学习需要大量样本对
基于可变形卷积神经网络的遥感图像飞机目标检测
作者: 李明阳   胡显   雷宏   来源: 国外电子测量技术 年份: 2021 文献类型 : 期刊 关键词: 卷积神经网络   遥感影像   可变形卷积   飞机检测  
描述: 遥感图像中的飞机检测在民用和军事应用中都是一个重要且富有挑战性的任务。针对现有目标检测算法在复杂场景中旋转不变性差的问题,提出了一种多尺度可变形卷积神经网络用以检测飞机目标。该方法通过将可
基于可变形卷积神经网络的遥感图像飞机目标检测
作者: 李明阳   胡显   雷宏   来源: 国外电子测量技术 年份: 2021 文献类型 : 期刊 关键词: 卷积神经网络   遥感影像   可变形卷积   飞机检测  
描述: 遥感图像中的飞机检测在民用和军事应用中都是一个重要且富有挑战性的任务。针对现有目标检测算法在复杂场景中旋转不变性差的问题,提出了一种多尺度可变形卷积神经网络用以检测飞机目标。该方法通过将可
基于优化CNN的航空液压管路卡箍故障诊断
作者: 窦金鑫   薛政坤   于晓光   范玉鑫   刘忠鑫   杨同光   来源: 机床与液压 年份: 2021 文献类型 : 期刊 关键词: 液压管路卡箍   卷积神经网络   故障诊断   优化变分模态分解  
描述: 针对航空发动机液压卡箍-管路系统具有高度复杂性,导致卡箍振动信号存在非线性、非平稳性,从而难以提取出卡箍故障状态有效信息的问题,提出一种基于优化变分模态分解(VMD)与卷积神经网络(CNN)的卡
基于CNN-Seq2Seq的航空发动机喘振诊断模型的研究
作者: 姚艳玲   袁化成   陆超   唐晓澜   黄爱华   来源: 测控技术 年份: 2022 文献类型 : 期刊 关键词: 序列到序列   卷积神经网络   故障诊断   发动机喘振  
描述: 和价值。当前针对航空发动机喘振故障诊断的模型存在诊断时间长、诊断准确率不高的特点。为了解决这些问题,在序列到序列(Seq2Seq)模型的基础上,使用卷积神经网络(CNN)代替Seq2Seq中编码器
< 1 2 3 ... 8 9 10 ... 73 74 75
Rss订阅