关键词
光学遥感图像中的飞机目标检测技术研究综述
作者: 祝文韬   谢宝蓉   王琰   沈霁   朱浩文   来源: 计算机科学 年份: 2021 文献类型 : 期刊 关键词: 机器学习   光学遥感图像   深度学习   飞机目标检测   模板匹配  
描述: 光学遥感图像中的飞机目标检测技术已被广泛应用于城市规划、航空交通以及军事侦察领域。目前尽管已有大量研究,但仍然存在很多问题亟待解决。文中回顾了该技术研究现状,并从遥感图像目标检测思路出发,将飞机目标检测方法总结为3类,对这3类检测方法的概念和研究情况分别进行了阐述,并在此基础上进行了比较分析,重点研究了深度学习方法在该领域的研究情况并讨论了样本和数据集问题,最后讨论了飞机目标检测的关键技术难点,并对该领域的未来发展趋势做了展望。
基于编解码网络的航空影像像素级建筑物提取
作者: 陈凯强   高鑫   闫梦龙   张跃   孙显   来源: 遥感学报 年份: 2021 文献类型 : 期刊 关键词: 卷积神经网络   建筑物提取   深度学习   遥感   航空影像  
描述: 建筑物提取在城市规划等土地利用分析中发挥着重要作用。用于提取建筑物的传统方法通常基于手工特征和分类器,导致精度较低。本文基于编解码结构的卷积神经网络CNN (Convolutional Neural Networks),自主学习多级的和具有区分度的特征来更好地辨识建筑物和背景,实现航空影像中的像素级建筑物提取。该网络由编码子网络和解码子网络两部分组成,编码子网络对输入图像进行空间分辨率压缩,完成特征提取;解码子网络从特征中提升空间分辨率,完成像素级的建筑物提取。此外,本文使用视野增强FoVE (Field-of-View Enhancement)方法减轻边缘现象(切片边缘附近的建筑物提取精度通常低于中心区域附近的精度)的影响,并分别在两个建筑物提取标准数据集上的实验表明,编解码卷积神经网络能有效实现像素级建筑物提取,FoVE能有效提高建筑物提取准确率;通过改变预测时切片大小和重叠度,分析其对建筑物提取结果的影响,揭示了FoVE的饱和性。
基于编解码网络的航空影像像素级建筑物提取
作者: 陈凯强   高鑫   闫梦龙   张跃   孙显   来源: 遥感学报 年份: 2021 文献类型 : 期刊 关键词: 卷积神经网络   建筑物提取   深度学习   遥感   航空影像  
描述: 建筑物提取在城市规划等土地利用分析中发挥着重要作用。用于提取建筑物的传统方法通常基于手工特征和分类器,导致精度较低。本文基于编解码结构的卷积神经网络CNN (Convolutional Neural Networks),自主学习多级的和具有区分度的特征来更好地辨识建筑物和背景,实现航空影像中的像素级建筑物提取。该网络由编码子网络和解码子网络两部分组成,编码子网络对输入图像进行空间分辨率压缩,完成特征提取;解码子网络从特征中提升空间分辨率,完成像素级的建筑物提取。此外,本文使用视野增强FoVE (Field-of-View Enhancement)方法减轻边缘现象(切片边缘附近的建筑物提取精度通常低于中心区域附近的精度)的影响,并分别在两个建筑物提取标准数据集上的实验表明,编解码卷积神经网络能有效实现像素级建筑物提取,FoVE能有效提高建筑物提取准确率;通过改变预测时切片大小和重叠度,分析其对建筑物提取结果的影响,揭示了FoVE的饱和性。
基于编解码网络的航空影像像素级建筑物提取
作者: 陈凯强   高鑫   闫梦龙   张跃   孙显   来源: 遥感学报 年份: 2021 文献类型 : 期刊 关键词: 卷积神经网络   建筑物提取   深度学习   遥感   航空影像  
描述: 建筑物提取在城市规划等土地利用分析中发挥着重要作用。用于提取建筑物的传统方法通常基于手工特征和分类器,导致精度较低。本文基于编解码结构的卷积神经网络CNN (Convolutional Neural Networks),自主学习多级的和具有区分度的特征来更好地辨识建筑物和背景,实现航空影像中的像素级建筑物提取。该网络由编码子网络和解码子网络两部分组成,编码子网络对输入图像进行空间分辨率压缩,完成特征提取;解码子网络从特征中提升空间分辨率,完成像素级的建筑物提取。此外,本文使用视野增强FoVE (Field-of-View Enhancement)方法减轻边缘现象(切片边缘附近的建筑物提取精度通常低于中心区域附近的精度)的影响,并分别在两个建筑物提取标准数据集上的实验表明,编解码卷积神经网络能有效实现像素级建筑物提取,FoVE能有效提高建筑物提取准确率;通过改变预测时切片大小和重叠度,分析其对建筑物提取结果的影响,揭示了FoVE的饱和性。
基于深度学习的航空重力梯度测量事后误差补偿方法研究
作者: 程一   来源: 吉林大学 年份: 2021 文献类型 : 学位论文 关键词: 信号仿真   旋转式重力梯度仪   误差补偿   深度学习   航空重力梯度测量误差  
描述: 基于深度学习的航空重力梯度测量事后误差补偿方法研究
基于网络中网络的遥感图像配准在飞行器导航中的应用研究
作者: 李绩鹏   来源: 上海应用技术大学 年份: 2021 文献类型 : 学位论文 关键词: 特征提取   图像辅助导航   特征匹配   深度学习   遥感图像配准  
描述: 基于网络中网络的遥感图像配准在飞行器导航中的应用研究
基于YOLO-CapsNet的航空发动机叶片凸台目标检测
作者: 钟欣童   来源: 青岛科技大学 年份: 2021 文献类型 : 学位论文 关键词: YOLO   深度学习   目标检测   叶片凸台   胶囊网络  
描述: 基于YOLO-CapsNet的航空发动机叶片凸台目标检测
航空遥感图像目标检测方法研究
作者: 赵鹏博   来源: 哈尔滨工业大学 年份: 2021 文献类型 : 学位论文 关键词: 遥感图像   极坐标系   深度学习   亚像素   倾斜目标检测  
描述: 航空遥感图像目标检测方法研究
基于RDK-ELM的航空发动机控制系统故障诊断
作者: 陈虹潞   黄向华   来源: 航空发动机 年份: 2021 文献类型 : 期刊 关键词: 航空发动机   极限学习机   控制系统   简约改进   故障诊断   深度学习  
描述: 为保持较高诊断正确率,缩短训练时间,满足航空发动机故障诊断对于实时性和高诊断率的需求,提出1种对深度核极限学习机的简约改进方法。输入数据中随机选取部分数据作为支持向量,结合深度学习网络的多层结构
稀疏驱动的航空发动机主轴承智能监测研究(英文)
作者: 丁宝庆   武靖耀   孙闯   王诗彬   陈雪峰   李应红   来源: Transactions of Nanjing University of Aeronautics and Astronautics 年份: 2021 文献类型 : 期刊 关键词: 特征提取   稀疏模型   变分自编码   智能监测   深度学习   航空发动机主轴承  
描述: 微弱特征提取是航空发动机健康监测与智能诊断的关键技术之一。本文针对航空发动机主轴承微弱故障智能监测难题,基于信号先验提出增强稀疏驱动的智能监测方法。通过分析经典凸稀疏诊断模型难以兼顾信号降噪与特征重构性能的缺陷,构建基于莫罗包络理论的非凸正则凸优化增强稀疏模型,以实现微弱特征提取;进而提出稀疏驱动的深度卷积变分自编码网络智能监测方法,通过对健康状态稀疏降噪样本的训练实现对故障异常状态的智能识别。通过航空发动机主轴承疲劳寿命试验的工程案例对提出方法进行性能验证,结果表明:增强稀疏驱动的智能监测方法具有良好的异常状态智能识别能力,能够有效支撑航空发动主轴承微弱故障的智能监测与诊断。
< 1 2 3 4
Rss订阅