首页>
根据【关键词:主成分分析,代理模型,载荷监测,民用飞机,神经网络】搜索到相关结果 13 条
-
基于多分类SVM的航空逆变器故障诊断
-
作者:
陈丽晶
张尚田
单添敏
姚晓涵
曹亮
王景霖
来源:
测控技术
年份:
2022
文献类型 :
期刊
关键词:
主成分分析
航空逆变器
故障诊断
多分类支持向量机
-
描述:
故障模式进行诊断。针对故障特征耦合性高的问题,采用主成分分析方法提取故障特征,获取低维度的关键特征。由于逆变器具有多种故障模式,且具有非线性的特点,故采用多分类支持向量机算法进行故障诊断。该算法具有
-
基于多分类SVM的航空逆变器故障诊断
-
作者:
陈丽晶
张尚田
单添敏
姚晓涵
曹亮
王景霖
来源:
测控技术
年份:
2022
文献类型 :
期刊
关键词:
主成分分析
航空逆变器
故障诊断
多分类支持向量机
-
描述:
故障模式进行诊断。针对故障特征耦合性高的问题,采用主成分分析方法提取故障特征,获取低维度的关键特征。由于逆变器具有多种故障模式,且具有非线性的特点,故采用多分类支持向量机算法进行故障诊断。该算法具有
-
基于APSO-LSSVM的航空发动机轴承故障诊断及寿命预测
-
作者:
刘海瑞
武宪威
李鹏
钱征华
李锟
来源:
测控技术
年份:
2024
文献类型 :
期刊
关键词:
航空发动机轴承
支持向量机
主成分分析
轴承诊断
粒子群算法
-
描述:
的最小二乘支持向量机(APSO Least Squares Support Vector Machine, APSO-LSSVM)对滑油系统中轴承磨屑进行在线监测的故障诊断及寿命预测。通过主成分分析
-
飞机发电机故障诊断的多特征参数组合分析
-
作者:
钱伟
王海斌
杨江
冯斌
来源:
测控技术
年份:
2018
文献类型 :
期刊
关键词:
小波变换
故障特征
飞机发电机
神经网络
-
描述:
值,构建神经网络进行故障判定,选用不同的振动特征参数组合对检验样本进行验证以期获得指向性较好的飞机发电机故障特征参数。诊断结果表明,利用RBF网络对发电机故障诊断,采用基于幅值域的特征参数峭度指标、峰值因子
-
飞机发电机故障诊断的多特征参数组合分析
-
作者:
钱伟
王海斌
杨江
冯斌
来源:
测控技术
年份:
2018
文献类型 :
期刊
关键词:
小波变换
故障特征
飞机发电机
神经网络
-
描述:
值,构建神经网络进行故障判定,选用不同的振动特征参数组合对检验样本进行验证以期获得指向性较好的飞机发电机故障特征参数。诊断结果表明,利用RBF网络对发电机故障诊断,采用基于幅值域的特征参数峭度指标、峰值因子
-
基于PCA优化的神经网络飞机燃油消耗预测方法
-
作者:
詹韧
张登成
郑无计
来源:
测控技术
年份:
2019
文献类型 :
期刊
关键词:
主成分分析法
S检验法
飞机燃油消耗
神经网络
k
-
描述:
针对传统方法存在的不足,提出了基于主成分分析法优化的Elman神经网络飞机燃油消耗预测方法。利用主成分分析法降低神经网络输入维数。构建主成分分析与Elman神经网络模型,进行基于飞参数据的实例分析
-
基于PCA优化的神经网络飞机燃油消耗预测方法
-
作者:
詹韧
张登成
郑无计
来源:
测控技术
年份:
2019
文献类型 :
期刊
关键词:
主成分分析法
S检验法
飞机燃油消耗
神经网络
k
-
描述:
针对传统方法存在的不足,提出了基于主成分分析法优化的Elman神经网络飞机燃油消耗预测方法。利用主成分分析法降低神经网络输入维数。构建主成分分析与Elman神经网络模型,进行基于飞参数据的实例分析
-
基于PCA优化的神经网络飞机燃油消耗预测方法
-
作者:
詹韧
张登成
郑无计
来源:
测控技术
年份:
2019
文献类型 :
期刊
关键词:
主成分分析法
S检验法
飞机燃油消耗
神经网络
k
-
描述:
针对传统方法存在的不足,提出了基于主成分分析法优化的Elman神经网络飞机燃油消耗预测方法。利用主成分分析法降低神经网络输入维数。构建主成分分析与Elman神经网络模型,进行基于飞参数据的实例分析
-
基于PCA优化的神经网络飞机燃油消耗预测方法
-
作者:
詹韧
张登成
郑无计
来源:
测控技术
年份:
2019
文献类型 :
期刊
关键词:
主成分分析法
S检验法
飞机燃油消耗
神经网络
k
-
描述:
针对传统方法存在的不足,提出了基于主成分分析法优化的Elman神经网络飞机燃油消耗预测方法。利用主成分分析法降低神经网络输入维数。构建主成分分析与Elman神经网络模型,进行基于飞参数据的实例分析
-
基于PCA优化的神经网络飞机燃油消耗预测方法
-
作者:
詹韧
张登成
郑无计
来源:
测控技术
年份:
2019
文献类型 :
期刊
关键词:
主成分分析法
S检验法
飞机燃油消耗
神经网络
k
-
描述:
针对传统方法存在的不足,提出了基于主成分分析法优化的Elman神经网络飞机燃油消耗预测方法。利用主成分分析法降低神经网络输入维数。构建主成分分析与Elman神经网络模型,进行基于飞参数据的实例分析