首页>
根据【关键词:上下文信息,深度建模,光学遥感图像,可变形部件模型(DPM),飞机检测】搜索到相关结果 28 条
-
基于深度环境上下文建模的遥感图像机场飞机检测
-
作者:
杨志华
来源:
北方工业大学
年份:
2020
文献类型 :
学位论文
关键词:
上下文信息
深度建模
光学遥感图像
可变形部件模型(DPM)
飞机检测
-
描述:
基于深度环境上下文建模的遥感图像机场飞机检测
-
基于深度神经网络的光学遥感图像飞机目标检测与细粒度识别
-
作者:
李珺
来源:
西安电子科技大学
年份:
2022
文献类型 :
学位论文
关键词:
细粒度识别
光学遥感图像
模型量化
飞机检测
噪声标签
-
描述:
基于深度神经网络的光学遥感图像飞机目标检测与细粒度识别
-
基于改进Faster R-CNN的SAR图像飞机检测算法
-
作者:
李广帅
苏娟
李义红
来源:
北京航空航天大学学报
年份:
2020
文献类型 :
期刊
关键词:
R
CNN
上下文信息
Align
浅层特征增强
Faster
飞机检测
ROI
-
描述:
在合成孔径雷达(Synthetic Aperture Radar,SAR)图像分析领域,飞机目标作为一种重要目标,对其的检测越来越受到重视。针对传统SAR图像飞机检测算法需要人工设计特征且鲁棒性较差的问题,提出一种基于改进Faster R-CNN的SAR图像飞机检测算法。本文制作了一个SAR图像飞机数据集SAD(SAR Aircraft Dataset),以Faster R-CNN为检测框架,利用改进k-means算法设计更合理的先验锚点框,以适应飞机目标的形状特点;借鉴inception模块思想,设计多路不同尺寸卷积核以扩展网络宽度,增强对浅层特征的表达;分析残差网络Layer5层的特征输出具有更大的感受野,对其上采样后进行特征融合以利用更多的上下文信息;同时引入Mask R-CNN算法中提出的RoI Align单元,消除特征图与原始图像的映射偏差。实验结果表明,相比原始的Faster R-CNN算法,本文提出的改进的Faster R-CNN检测算法在SAR图像飞机数据集上平均检测精度提高了7.4%,同时保持了较快的检测速度。
-
光学遥感图像中的飞机目标检测技术研究综述
-
作者:
祝文韬
谢宝蓉
王琰
沈霁
朱浩文
来源:
计算机科学
年份:
2021
文献类型 :
期刊
关键词:
机器学习
光学遥感图像
深度学习
飞机目标检测
模板匹配
-
描述:
光学遥感图像中的飞机目标检测技术已被广泛应用于城市规划、航空交通以及军事侦察领域。目前尽管已有大量研究,但仍然存在很多问题亟待解决。文中回顾了该技术研究现状,并从遥感图像目标检测思路出发,将飞机目标检测方法总结为3类,对这3类检测方法的概念和研究情况分别进行了阐述,并在此基础上进行了比较分析,重点研究了深度学习方法在该领域的研究情况并讨论了样本和数据集问题,最后讨论了飞机目标检测的关键技术难点,并对该领域的未来发展趋势做了展望。
-
光学遥感图像中的飞机目标检测技术研究综述
-
作者:
祝文韬
谢宝蓉
王琰
沈霁
朱浩文
来源:
计算机科学
年份:
2021
文献类型 :
期刊
关键词:
机器学习
光学遥感图像
深度学习
飞机目标检测
模板匹配
-
描述:
光学遥感图像中的飞机目标检测技术已被广泛应用于城市规划、航空交通以及军事侦察领域。目前尽管已有大量研究,但仍然存在很多问题亟待解决。文中回顾了该技术研究现状,并从遥感图像目标检测思路出发,将飞机目标检测方法总结为3类,对这3类检测方法的概念和研究情况分别进行了阐述,并在此基础上进行了比较分析,重点研究了深度学习方法在该领域的研究情况并讨论了样本和数据集问题,最后讨论了飞机目标检测的关键技术难点,并对该领域的未来发展趋势做了展望。
-
光学遥感图像停泊飞机目标检测方法研究
-
作者:
李翰夫
来源:
哈尔滨工业大学
年份:
2021
文献类型 :
学位论文
关键词:
机场停泊飞机检测
卷积神经网络
光学遥感图像
动态锚点学习法
特征金字塔
-
描述:
光学遥感图像停泊飞机目标检测方法研究
-
光学遥感图像复杂机场背景下的飞机检测算法研究
-
作者:
杨一丁
来源:
北京理工大学
年份:
2018
文献类型 :
学位论文
关键词:
全卷积神经网络
卷积神经网络
复杂背景
光学遥感图像
飞机目标检测
-
描述:
光学遥感图像复杂机场背景下的飞机检测算法研究
-
基于可变形卷积神经网络的遥感图像飞机目标检测
-
作者:
李明阳
胡显
雷宏
来源:
国外电子测量技术
年份:
2021
文献类型 :
期刊
关键词:
卷积神经网络
遥感影像
可变形卷积
飞机检测
-
描述:
遥感图像中的飞机检测在民用和军事应用中都是一个重要且富有挑战性的任务。针对现有目标检测算法在复杂场景中旋转不变性差的问题,提出了一种多尺度可变形卷积神经网络用以检测飞机目标。该方法通过将可变形卷积适当地嵌入到特征金字塔来构建可变形特征金字塔,使得金字塔可以自适应的调整卷积过程中的空间采样位置,在进行飞机检测时具有一定的旋转不变性,且在各种复杂场景中也更加可靠。同时,根据训练集中的目标尺寸设计锚点尺寸并引入焦点分类损失以有效地关注难分类样本。该方法在公共UCAS-AOD数据集获得了97.39%的平均精度与RetinaNet模型相比提高了1.59%,并优于R-FCN、YOLOV2等其他流行方法,证明了该方法的有效性和准确性。
-
基于可变形卷积神经网络的遥感图像飞机目标检测
-
作者:
李明阳
胡显
雷宏
来源:
国外电子测量技术
年份:
2021
文献类型 :
期刊
关键词:
卷积神经网络
遥感影像
可变形卷积
飞机检测
-
描述:
遥感图像中的飞机检测在民用和军事应用中都是一个重要且富有挑战性的任务。针对现有目标检测算法在复杂场景中旋转不变性差的问题,提出了一种多尺度可变形卷积神经网络用以检测飞机目标。该方法通过将可变形卷积适当地嵌入到特征金字塔来构建可变形特征金字塔,使得金字塔可以自适应的调整卷积过程中的空间采样位置,在进行飞机检测时具有一定的旋转不变性,且在各种复杂场景中也更加可靠。同时,根据训练集中的目标尺寸设计锚点尺寸并引入焦点分类损失以有效地关注难分类样本。该方法在公共UCAS-AOD数据集获得了97.39%的平均精度与RetinaNet模型相比提高了1.59%,并优于R-FCN、YOLOV2等其他流行方法,证明了该方法的有效性和准确性。
-
基于最优区域生成的深度多尺度融合遥感飞机检测方法
-
作者:
刘晨
郑恩让
张桐
来源:
科学技术与工程
年份:
2020
文献类型 :
期刊
关键词:
遥感图像
飞机检测
多尺度融合
锚框
-
描述:
基于最优区域生成的深度多尺度融合遥感飞机检测方法