首页>
根据【关键词:航空发动机,健康状态评估,不确定性,贝叶斯神经网络,剩余寿命预测】搜索到相关结果 2721 条
-
基于CAE与LSTM的航空发动机剩余寿命预测
-
作者:
王旭
艾红
来源:
北京信息科技大学学报(自然科学版)
年份:
2021
文献类型 :
期刊
关键词:
卷积自编码器
航空发动机
长短期记忆
健康因子
剩余寿命预测
-
描述:
通过深度学习方法构建航空发动机的健康状况评估模型,并在此模型基础上进行剩余寿命预测。基于卷积自编码器构建航空发动机的健康因子(health indicator,HI),以其HI值反映健康状况;通过
-
基于改进GRU的航空发动机剩余寿命预测
-
作者:
车畅畅
王华伟
倪晓梅
付强
来源:
航空计算技术
年份:
2021
文献类型 :
期刊
关键词:
航空发动机
时间序列预测
性能退化分析
GRU神经网络
剩余寿命预测
-
描述:
针对航空发动机状态参数多样且非线性相关、退化过程复杂的特点,提出了基于改进GRU(Gated Recurrent Units)神经网络的航空发动机剩余寿命预测模型。模型具有多层的GRU神经网络,将
-
基于注意力与LSTM的航空发动机剩余寿命预测
-
作者:
王欣
孟天宇
周俊曦
来源:
科学技术与工程
年份:
2022
文献类型 :
期刊
关键词:
注意力机制
长短期记忆网络
航空发动机
剩余寿命预测
预测性维护
-
描述:
预测性维护的核心技术之一是设备剩余寿命(remaining useful life, RUL)预测。为了提高航空发动机的剩余寿命预测精度,提出了一种基于注意力与长短期记忆(directional
-
基于可自动扩展的LSTM模型的航空发动机剩余寿命预测方法
-
作者:
胡立坤
何旭杰
殷林飞
来源:
计算机应用研究
年份:
2023
文献类型 :
期刊
关键词:
长短期记忆网络
航空发动机
自动扩展
子模块级联
剩余寿命预测
-
描述:
了95.44%,同时它的预测效果也优于现有的一些先进算法。实验充分验证了AELSTM模型在提升航空发动机剩余寿命预测准确度方面的有效性与优势。
-
基于改进生成对抗网络与ConvLSTM的航空发动机剩余寿命预测方法
-
作者:
陈维兴
常东润
李宗帅
来源:
电子测量与仪器学报
年份:
2023
文献类型 :
期刊
关键词:
梯度惩罚项
航空发动机
条件式生成对抗网络
Wasserstein距离
剩余寿命预测
-
描述:
针对航空发动机运行周期内故障数据难以采集而造成的数据失衡等问题,提出一种基于Wasserstein距离与梯度惩罚措施的条件生成对抗网络与卷积长短时记忆网络相结合的预测模型。首先,使用WCGAN-GP
-
基于改进GRU的航空发动机剩余寿命预测
-
作者:
车畅畅
王华伟
倪晓梅
付强
来源:
航空计算技术
年份:
2021
文献类型 :
期刊
关键词:
航空发动机
时间序列预测
性能退化分析
GRU神经网络
剩余寿命预测
-
描述:
针对航空发动机状态参数多样且非线性相关、退化过程复杂的特点,提出了基于改进GRU(Gated Recurrent Units)神经网络的航空发动机剩余寿命预测模型。模型具有多层的GRU神经网络,将
-
基于注意力与LSTM的航空发动机剩余寿命预测
-
作者:
王欣
孟天宇
周俊曦
来源:
科学技术与工程
年份:
2022
文献类型 :
期刊
关键词:
注意力机制
长短期记忆网络
航空发动机
剩余寿命预测
预测性维护
-
描述:
预测性维护的核心技术之一是设备剩余寿命(remaining useful life, RUL)预测。为了提高航空发动机的剩余寿命预测精度,提出了一种基于注意力与长短期记忆(directional
-
基于可自动扩展的LSTM模型的航空发动机剩余寿命预测方法
-
作者:
胡立坤
何旭杰
殷林飞
来源:
计算机应用研究
年份:
2023
文献类型 :
期刊
关键词:
长短期记忆网络
航空发动机
自动扩展
子模块级联
剩余寿命预测
-
描述:
了95.44%,同时它的预测效果也优于现有的一些先进算法。实验充分验证了AELSTM模型在提升航空发动机剩余寿命预测准确度方面的有效性与优势。
-
基于改进生成对抗网络与ConvLSTM的航空发动机剩余寿命预测方法
-
作者:
陈维兴
常东润
李宗帅
来源:
电子测量与仪器学报
年份:
2023
文献类型 :
期刊
关键词:
梯度惩罚项
航空发动机
条件式生成对抗网络
Wasserstein距离
剩余寿命预测
-
描述:
针对航空发动机运行周期内故障数据难以采集而造成的数据失衡等问题,提出一种基于Wasserstein距离与梯度惩罚措施的条件生成对抗网络与卷积长短时记忆网络相结合的预测模型。首先,使用WCGAN-GP
-
基于ConvJANET的航空发动机剩余寿命预测及其不确定性量化
-
作者:
苗永浩
李晨辉
石惠芳
林京
来源:
中国科学:技术科学
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
极大似然估计
不确定性量化
卷积循环神经网络
剩余寿命预测
-
描述:
航空发动机RUL预测精度较低、不确定性难以量化的问题,本文提出了一种数据驱动的航空发动机RUL区间预测方法.首先,在ConvJANET框架下构建新的卷积/卷积循环/全连接结构的深度学习模型,逐层提取