按文献类别分组
按栏目分组
关键词
基于CNN-Seq2Seq的航空发动机喘振诊断模型的研究
作者: 姚艳玲   袁化成   陆超   唐晓澜   黄爱华   来源: 测控技术 年份: 2022 文献类型 : 期刊 关键词: 序列到序列   卷积神经网络   故障诊断   发动机喘振  
描述: 发动机上的多传感器试验数据对模型进行实验,实验结果表明该模型在显著降低模型大小和计算量的同时,在精确率、召回率及F1 Score上仍然获得了94.3%、92.1%、93.2%的表现,同时单次预测耗时仅需2 ms。
基于卷积神经网络的航空零件去噪技术
作者: 赵安安   郑炜   郭俊刚   来源: 机械设计与制造工程 年份: 2023 文献类型 : 期刊 关键词: 卷积神经网络   法线估计   计算机辅助设计   点云去噪  
描述: 为去除在用三维激光扫描技术扫描航空零部件时,因扫描环境、设备等因素带来的大量零件点云噪声,提出基于卷积神经网络的航空零件去噪技术。首先应用经典卷积神经网络预测点云法线信息,然后以此进一步对点云进行位置更新,从而实现点云去噪。经实验证明,与目前的去噪方法相比,所提方法在去噪方面更具优越性。
基于多变量多步CNN的航空发动机剩余寿命预测
作者: 曹越   来源: 航空计算技术 年份: 2023 文献类型 : 期刊 关键词: 航空发动机   卷积神经网络   剩余寿命   端对端预测   状态参数  
描述: 针对航空发动机状态参数多、非线性特征提取难、多环节剩余寿命预测累计误差高的痛点问题,提出多变量多步卷积神经网络用于航空发动机剩余寿命预测。将多状态参数对应的长时间序列作为输入样本,连续的剩余寿命值作为模型输出,通过多变量多步卷积神经网络的特征提取与降维处理,实现了从多状态参数到多步剩余寿命的端对端直接预测。利用C/MAPSS仿真数据集进行实例验证,结果表明:多变量多步卷积神经网络能够高效准确的得到端对端剩余寿命预测结果;与其他对比模型相比,也有更低的预测误差。
基于卷积神经网络的遥感图像飞机检测
作者: 张义德   胡长雨   胡春育   来源: 光电子技术 年份: 2017 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   微调   迁移学习   飞机检测  
描述: 提出一种CNN的遥感图像飞机检测的方法。首先获得预训练好的CNN,然后通过参数迁移获得五层卷积层模型参数,接着利用遥感图像对第五层卷积层进行微调获得一个特征提取器。将特征提取器用于提取遥感图像训练集的深度特征,训练可变形部件检测模型。实验表明,提出的方法大大提高了遥感图像飞机目标检测精度,准确率达96%以上。
基于多结构卷积神经网络的高分遥感影像飞机目标检测
作者: 姚相坤   万里红   霍宏   方涛   来源: 计算机工程 年份: 2017 文献类型 : 期刊 关键词: 特征提取   卷积神经网络   多结构网络   目标检测   高分遥感影像  
描述: 传统的遥感影像目标检测方法大多利用人工提取特征,难以用于背景复杂的高分辨率遥感影像。针对该问题,构建一种多结构卷积神经网络模型(MSCNN)自动学习目标特征。通过改变卷积滤波器尺寸、数量以及网络层数,分别设计4种不同结构的CNN以提取目标从低层、中层到高层不同尺度的特征信息,并将4种CNN输出采用串行方式连接并输入到BP神经网络分类器进行训练。在检测阶段采用滑动窗口方法进行目标搜索。对高分辨遥感影像中飞机的检测实验结果表明,MSCNN在虚警率和召回率上较4种单一结构的CNN具有明显的检测优势,召回率平均提升6%,虚警率平均降低3%。对油罐的检测结果进一步表明,MSCNN可以推广到对遥感影像其他目标的检测。
遥感图像飞机目标分类的卷积神经网络方法
作者: 周敏   史振威   丁火平   来源: 中国图象图形学报 年份: 2017 文献类型 : 期刊 关键词: 卷积神经网络   深度学习   可见光遥感   飞机   分类  
描述: 分类问题。方法在缺乏公开数据集的情况下,收集了真实可见光遥感图像中的8种飞机数据,按大致4∶1的比例分为训练集和测试集,并对训练集进行合理扩充。然后针对遥感图像与飞机分类的特殊性,结合深度学习卷积
基于深度学习的离场航空器滑行时间预测(英文)
作者: 李楠   焦庆宇   朱新华   王少聪   来源: Transactions of Nanjing University of Aeronautics and Astronautics 年份: 2021 文献类型 : 期刊 关键词: 卷积神经网络   场面运行   滑行时间   深度学习   航空运输  
描述: 随着航班数量的不断增加,机场协同决策系统(Airport collaborative decision-making,A-CDM)的使用也越来越广泛。滑行时间预测的准确性对A-CDM计算离场航空器起飞排序队列和给出准确的撤轮挡时间具有重要的作用。本文提出一种基于时间-空间-环境数据的深度学习模型(Spatio-temporal-environment deep learning model,STEDL)来提高滑行时间预测的准确性。该模型由时间-流量变量(机场实际容量,场面航空器数量,时间段)、空间变量(滑行距离)、外部环境变量(天气,流控信息,跑道运行模式,机型)3部分组成。使用STEDL模型对香港机场离场航空器滑行时间进行预测验证。实验结果显示,STEDL模型预测准确率为95.4%,预测精度明显优于其他机器学习算法。
基于深度神经网络的遥感图像飞机目标检测
作者: 李文斌   何冉   来源: 计算机工程 年份: 2021 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   目标检测   密度聚类   像素级标签  
描述: 。实验结果表明,DC-DNN模型对于遥感图像飞机目标检测的准确率、召回率和F1值分别为95.78%、98.98%和0.973 5,相比WS-DNN、R-FCN等模型具有更好的检测性能和泛化能力。
基于深度神经网络的遥感图像飞机目标检测
作者: 李文斌   何冉   来源: 计算机工程 年份: 2021 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   目标检测   密度聚类   像素级标签  
描述: 。实验结果表明,DC-DNN模型对于遥感图像飞机目标检测的准确率、召回率和F1值分别为95.78%、98.98%和0.973 5,相比WS-DNN、R-FCN等模型具有更好的检测性能和泛化能力。
基于编解码网络的航空影像像素级建筑物提取
作者: 陈凯强   高鑫   闫梦龙   张跃   孙显   来源: 遥感学报 年份: 2021 文献类型 : 期刊 关键词: 卷积神经网络   建筑物提取   深度学习   遥感   航空影像  
描述: 建筑物提取在城市规划等土地利用分析中发挥着重要作用。用于提取建筑物的传统方法通常基于手工特征和分类器,导致精度较低。本文基于编解码结构的卷积神经网络CNN (Convolutional Neural Networks),自主学习多级的和具有区分度的特征来更好地辨识建筑物和背景,实现航空影像中的像素级建筑物提取。该网络由编码子网络和解码子网络两部分组成,编码子网络对输入图像进行空间分辨率压缩,完成特征提取;解码子网络从特征中提升空间分辨率,完成像素级的建筑物提取。此外,本文使用视野增强FoVE (Field-of-View Enhancement)方法减轻边缘现象(切片边缘附近的建筑物提取精度通常低于中心区域附近的精度)的影响,并分别在两个建筑物提取标准数据集上的实验表明,编解码卷积神经网络能有效实现像素级建筑物提取,FoVE能有效提高建筑物提取准确率;通过改变预测时切片大小和重叠度,分析其对建筑物提取结果的影响,揭示了FoVE的饱和性。
< 1 2 3 4
Rss订阅