关键词
基于改进差分时域特征和深度学习优化的航空发动机剩余寿命预测算法
作者: 高峰   曲建岭   袁涛   高峰娟   来源: 电子测量与仪器学报 年份: 2019 文献类型 : 期刊 关键词: 航空发动机   长短时记忆网络   寿命预测   深度学习   差分时域特征  
描述: 实现航空发动机剩余寿命的准确预测对于保证飞行安全和提高维修效率具有重要意义,但现有的预测算法往往只是浅层结构,且对各传感器参数之间的相互关系缺乏关联性考虑,限制了对发动机参数信息的深度挖掘。在深度
基于特征注意力机制的GRU-GAN航空发动机剩余寿命预测
作者: 袁烨   黄虹   程骋   虞文武   丁汉   来源: 中国科学:技术科学 年份: 2022 文献类型 : 期刊 关键词: 注意力机制   生成对抗网络   特征提取   航空航天   剩余寿命预测  
描述: 涡扇发动机作为航空航天领域的核心设备之一,其健康状况决定了航空器能否稳定可靠地运行.涡扇发动机的剩余寿命预测是航天器设备监测与维护的重要一环.然而涡扇发动机的监测过程具有工况复杂、监测数据多样
基于KPCA-BLSTM的航空发动机多信息融合剩余寿命预测
作者: 胡启国   白熊   杜春超   来源: 航空工程进展 年份: 2022 文献类型 : 期刊 关键词: 航空发动机   剩余寿命   多信息融合   核主成分分析   双向长短时记忆  
描述: 复杂航空发动机在运行过程中易出现多退化信息而导致寿命预测不精确的问题,为此提出基于核主成分分析(KPCA)和双向长短时记忆(BLSTM)神经网络的多信息融合寿命预测模型。首先采用KPCA对多维退化
民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅱ:地面综合诊断、寿命管理和智能维护维修决策
作者: 曹明   王鹏   左洪福   曾海军   孙见忠   杨卫东   魏芳   陈雪峰   来源: 航空学报 年份: 2023 文献类型 : 期刊 关键词: 故障融合决策   数字孪生   航空发动机健康管理系统   深度学习   智能视情维护维修   知识图谱   寿命管理  
描述: 需要重点关注的民用发动机EHM研发方向。针对各个EHM功能模块的需求、差距、解决方案进行了深入论证分析,重点讨论了民用发动机EHM“下游”3个模块:地面综合诊断、寿命管理和智能视情维护维修决策的需求、必要性、现状及未来发展趋势和热点技术。
基于堆栈自编码器和DeepAR的航空发动机剩余寿命预测
作者: 李浩   王卓健   李哲   陈煊   李园   来源: 推进技术 年份: 2023 文献类型 : 期刊 关键词: 航空发动机   寿命预测   深度学习   预测模型   数据融合  
描述: 针对现有航空发动机剩余寿命预测大多基于单点预测模式,不能准确给出预测结果置信区间的问题,提出了一种基于堆栈自编码器结合DeepAR模型的概率分布预测模型。首先,堆栈自编码器通过无监督式深度学习对
基于改进生成对抗网络与ConvLSTM的航空发动机剩余寿命预测方法
作者: 陈维兴   常东润   李宗帅   来源: 电子测量与仪器学报 年份: 2023 文献类型 : 期刊 关键词: 梯度惩罚项   航空发动机   条件式生成对抗网络   Wasserstein距离   剩余寿命预测  
描述: 针对航空发动机运行周期内故障数据难以采集而造成的数据失衡等问题,提出一种基于Wasserstein距离与梯度惩罚措施的条件生成对抗网络与卷积长短时记忆网络相结合的预测模型。首先,使用WCGAN-GP模型学习预处理后的时序数据的深层分布特征;然后,利用生成器生成故障样本并与真实样本混合,作为训练集输入到基于ConvLSTM网络的预测模型中进行训练。基于C-MAPSS数据集开展验证比较,结果表明:与单一真实样本训练预测模型相比,使用混合数据时性能指标RMSE和Score平均下降了12.65%和48.95%。
基于可自动扩展的LSTM模型的航空发动机剩余寿命预测方法
作者: 胡立坤   何旭杰   殷林飞   来源: 计算机应用研究 年份: 2023 文献类型 : 期刊 关键词: 长短期记忆网络   航空发动机   自动扩展   子模块级联   剩余寿命预测  
描述: 对航空发动机进行实时状态监测与健康管理可以有效降低发动机故障风险,确保飞机飞行安全。准确预测航空发动机的剩余寿命是有效监测发动机运行状态的一种重要手段,其中长短期记忆(Long-Short Term
基于特征注意力机制的GRU-GAN航空发动机剩余寿命预测
作者: 袁烨   黄虹   程骋   虞文武   丁汉   来源: 中国科学:技术科学 年份: 2022 文献类型 : 期刊 关键词: 注意力机制   生成对抗网络   特征提取   航空航天   剩余寿命预测  
描述: 涡扇发动机作为航空航天领域的核心设备之一,其健康状况决定了航空器能否稳定可靠地运行.涡扇发动机的剩余寿命预测是航天器设备监测与维护的重要一环.然而涡扇发动机的监测过程具有工况复杂、监测数据多样
基于KPCA-BLSTM的航空发动机多信息融合剩余寿命预测
作者: 胡启国   白熊   杜春超   来源: 航空工程进展 年份: 2022 文献类型 : 期刊 关键词: 航空发动机   剩余寿命   多信息融合   核主成分分析   双向长短时记忆  
描述: 复杂航空发动机在运行过程中易出现多退化信息而导致寿命预测不精确的问题,为此提出基于核主成分分析(KPCA)和双向长短时记忆(BLSTM)神经网络的多信息融合寿命预测模型。首先采用KPCA对多维退化
基于Transformer的多特征融合的航空发动机剩余使用寿命预测
作者: 马依琳   陶慧玲   董启文   王晔   来源: 华东师范大学学报(自然科学版) 年份: 2022 文献类型 : 期刊 关键词: 航空发动机   Transformer   深度学习   剩余使用寿命  
描述: 发动机作为飞机的核心部件,对飞机运行起着至关重要的作用.对航空发动机做准确的剩余使用寿命预测,能够提前进行维护诊断,预防重大事故的发生,节约维护成本.针对现有的方法缺乏对不同时间步长的考虑以及不同
< 1 2 3 ... 22 23 24
Rss订阅