关键词
基于剪枝和去噪的航空发动机故障图像识别与预测
作者: 傅荣春雪   刘君强   冯潇楠   余卓倩   来源: 航空计算技术 年份: 2023 文献类型 : 期刊 关键词: YOLO   图像去噪   目标检测   孔探图像   剪枝算法  
描述: 航空发动机叶片作为航空器重要的零件,其健康状况直接关系到航班的运行安全。叶片由于工作环境恶劣很容易产生裂纹、掉块、烧灼等损伤,目前基于孔探技术的叶片损伤检测以人工为主,检测结果在很大程度上受到人为因素的影响。因此,实现叶片损伤的自动识别及测量对于减轻劳动强度和提高检测精度都有实际的应用价值。首先选择PRIDnet图像去噪算法对原始孔探图像进行预处理,按照训练精度和训练速度两个指标对传统目标检测模型进行通道剪枝和微调。数据集采用国内某航空公司获取到CFM56型发动机在实际运营后机务人员所拍摄的孔探图像,实验结果表明,相比于原始目标检测YOLOv5算法和未经图像预处理的目标检测模型,本方法对航空发动机孔探图像内损伤的检测精度提高4%~10%,在检测效率上提高6%~20%。
基于多分辨率遥感影像的飞机检测研究
作者: 侯宇青阳   全吉成   魏湧明   来源: 激光与光电子学进展 年份: 2018 文献类型 : 期刊 关键词: 显著性提取   遥感影像   目标检测   深度学习  
描述: 从多分辨遥感图像特点、深度学习网络结构和飞机目标尺寸三个方面进行研究,明确了检测结果与图像中飞机目标像素数的定量关系,对影响图像中目标像素数的两个因素飞机实际尺寸和图像分辨率关系进行定量分析。在检测结论基础上设计了基于显著性检测算法的遥感图像前期处理算法,算法基于生成的显著性图像生成图像掩膜提取潜在目标区域图像块,进行多尺度放大,增加图像中目标的像素数,提升目标检测率。前期处理算法自适应的进行图像目标区域提取,解决了不同分辨率的大尺寸遥感影像中飞机检测率低的问题,通过与原始检测算法和其他图像处理方法对比验证了本文设计算法的有效性,在检测准确率和检测速度上均得到明显提升。
基于CenterNet的航空遥感图像目标检测
作者: 杨曦中   高冠鸿   熊智   张玲   来源: 航空电子技术 年份: 2022 文献类型 : 期刊 关键词: 目标检测   深度学习   神经网络   CenterNet  
描述: 为实现高精度的航空图像目标检测,将Anchor free的目标检测算法CenterNet应用到检测中,同时使用Resnet50主干网络,并引入CIoU损失替代原有损失函数对网络模型做出了改进。改进后的算法在RSOD与DIOR数据集上进行测试,结果显示在保证网络轻量化的前提下检测精度有明显的提高,证明了算法在航空目标检测方面的可行性与准确性。
基于注意力机制的航空图像旋转框目标检测
作者: 常洪彬   李文举   李文辉   来源: 吉林大学学报(理学版) 年份: 2022 文献类型 : 期刊 关键词: 航空图像   注意力机制   目标检测   深度学习  
描述: 针对在航空遥感图像目标检测中,航空图像在俯视图下呈任意方向排列,存在图像尺寸大、方向任意和背景复杂等问题,为能在复杂背景的航空图像中仍有较好的检测结果,提出一种基于注意力机制的旋转框航空图像目标检测模型.该模型首先采用RetinaNet作为基线模型,在原有检测器结构的基础上,增加额外的角度参数以适应旋转框目标检测;然后提出一个新的通道语义提取注意力模块(CSE),用于捕获全局语义信息和通道关系,并预测粗糙包围盒与分类分数;最后采用特征对齐和改进的Fast R-CNN检测头进行精细化处理,进一步提升检测精度,得到最后的分类和回归结果.实验结果表明,该方法在公开航空遥感数据集DOTA上的检测精度达到77.71%,优于其他先进的旋转框目标检测方法.
航空遥感影像中的轻量级小目标检测
作者: 薛雅丽   孙瑜   马瀚融   来源: 电光与控制 年份: 2022 文献类型 : 期刊 关键词: 小目标   遥感图像   特征融合   深度学习   目标检测  
描述: 单阶段目标检测算法凭借结构简单、模型高效等特点获得很多研究者及工业界的关注。以现有的YOLO算法为基础,针对遥感图像中目标尺寸小、排列紧密等困难,提出一种提升复杂背景下小目标检测精度的轻量级目标检测方法。该方法引入加权融合特征网络,为每层特征图赋予可在训练中不断学习的权重系数,加强深浅层特征融合。通过引入CIoU损失及模型改进,加快网络收敛速度,使其满足实时性需求。在基于DOTA构建的遥感图像小目标数据集上进行对比实验,结果表明,该方法具有更好的检测精度与检测速度。
基于改进YOLOv5的轻量化航空目标检测方法
作者: 杨小冈   高凡   卢瑞涛   李维鹏   张涛   曾俊   来源: 信息与控制 年份: 2022 文献类型 : 期刊 关键词: 注意力   通道剪枝   深度学习   目标检测   模型压缩  
描述: ,设计通道注意力增强结构MNtECA(MobileNetv3 with Efficient Channel Attention)提高特征提取能力;其次在深度可分离卷积层增加1×1的卷积,在减少卷积结构参数
基于改进YOLOv5的轻量化航空目标检测方法
作者: 杨小冈   高凡   卢瑞涛   李维鹏   张涛   曾俊   来源: 信息与控制 年份: 2022 文献类型 : 期刊 关键词: 注意力   通道剪枝   深度学习   目标检测   模型压缩  
描述: ,设计通道注意力增强结构MNtECA(MobileNetv3 with Efficient Channel Attention)提高特征提取能力;其次在深度可分离卷积层增加1×1的卷积,在减少卷积结构参数
基于深度学习的航空铆钉分类及异常情况检测
作者: 夏正洪   何琥   吴建军   魏汝祥   来源: 中国安全生产科学技术 年份: 2023 文献类型 : 期刊 关键词: 召回率   精确率   深度学习   目标检测   航空铆钉  
描述: 针对航空铆钉小目标检测准确率较低、速率较慢等问题,提出1种基于深度学习的航空铆钉分类及异常情况检测方法。首先,根据钉头外观对航空铆钉进行分类,制作航空铆钉数据集;然后,构建航空铆钉分类及异常情况检测
基于SW/YOLO模型的航空发动机叶片损伤实时检测
作者: 何宇豪   曹学国   刘信良   蒋浩坤   王静秋   来源: 推进技术 年份: 2023 文献类型 : 期刊 关键词: 航空发动机   实时检测   叶片损伤   深度学习   目标检测   孔探检测  
描述: 孔探检测技术是航空发动机叶片损伤检测的主要手段,但目前依赖人工操作,耗时耗力。本文提出了一个孔探视频检测的SW/YOLO模型,该模型包括输入端、主干网络、颈部网络、头部网络4个模块。首先,在主干网络加入了空间通道注意力模块(Spatial Channel / Convolutional Block Attention Module,SC/CBAM),有效避免位置信息丢失,提高目标边界回归能力,相较于YOLOv5,其平均精度均值mAP@0.5提高了5.4%。其次,在颈部网络对特征金字塔网络(Feature Pyramid Network,FPN)进行了改进,通过融合低层特征,扩大了模型感受野,有利于较小损伤区域的检测,如烧蚀损伤,平均精度提高了8.1%。最后,通过与YOLOv5,Faster R/CNN,SSD模型的对比实验,结果表明SW/YOLO模型的平均精度均值分别提高了7%,6.2%,6.3%,检测速度满足实时检测需求,有利于提高航空发动机孔探检测的自动化和智能化水平。
基于深度学习的光学遥感图像飞机检测算法
作者: 董永峰   仉长涛   汪鹏   冯哲   来源: 激光与光电子学进展 年份: 2021 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   图像处理   目标检测   深度学习   Mask   RCNN算法  
描述: 光学遥感图像目标检测一直都是遥感领域研究的热点之一,但现有的检测方法对背景复杂且尺寸较小的目标检测准确率不高。针对以上问题,提出了一种以Mask-RCNN为基础框架的目标检测方法。该算法以ResNet50为特征提取网络并在此基础之上利用特征重用技术来更好地提取目标的语义特征,且针对不同类型的飞机尺寸比例不固定等特点,设计了一组更加合适的候选框尺度集合。实验结果证明,该方法与以往常用的检测算法相比在小物体检测上拥有更高的检测精度。
< 1 2 ... 9 10 11
Rss订阅