关键词
基于改进Faster R-CNN的SAR图像飞机检测算法
作者: 李广帅   苏娟   李义红   来源: 北京航空航天大学学报 年份: 2020 文献类型 : 期刊 关键词: R   CNN   上下文信息   Align   浅层特征增强   Faster   飞机检测   ROI  
描述: 在合成孔径雷达(Synthetic Aperture Radar,SAR)图像分析领域,飞机目标作为一种重要目标,对其的检测越来越受到重视。针对传统SAR图像飞机检测算法需要人工设计特征且鲁棒性较差的问题,提出一种基于改进Faster R-CNN的SAR图像飞机检测算法。本文制作了一个SAR图像飞机数据集SAD(SAR Aircraft Dataset),以Faster R-CNN为检测框架,利用改进k-means算法设计更合理的先验锚点框,以适应飞机目标的形状特点;借鉴inception模块思想,设计多路不同尺寸卷积核以扩展网络宽度,增强对浅层特征的表达;分析残差网络Layer5层的特征输出具有更大的感受野,对其上采样后进行特征融合以利用更多的上下文信息;同时引入Mask R-CNN算法中提出的RoI Align单元,消除特征图与原始图像的映射偏差。实验结果表明,相比原始的Faster R-CNN算法,本文提出的改进的Faster R-CNN检测算法在SAR图像飞机数据集上平均检测精度提高了7.4%,同时保持了较快的检测速度。
航空发动机传感器与执行机构信息重构算法
作者: 孙浩   郭迎清   赵万里   来源: 北京航空航天大学学报 年份: 2021 文献类型 : 期刊 关键词: 航空发动机   故障诊断   广义似然比(GLR)   故障幅值估计   信息重构  
描述: 为实现航空发动机传感器与执行结构在故障情形下的故障幅值估计及信息重构,缓解故障对发动机性能的影响,在已有故障检测和故障隔离算法的基础上,提出一种基于修正的广义似然比(GLR)方法的信息重构算法。针对某型民用涡扇发动机的传感器与执行机构发生恒偏差与漂移故障的情形下进行了仿真验证。结果表明:基于修正的GLR方法对传感器和执行机构恒偏差和漂移故障的故障幅值估计具有较高的精度,两种故障情形下故障幅值的估计值的均方根误差均不超过0.005,故障部件信息重构后故障对系统性能的影响得到有效缓解。
航空发动机传感器与执行机构信息重构算法
作者: 孙浩   郭迎清   赵万里   来源: 北京航空航天大学学报 年份: 2020 文献类型 : 期刊 关键词: 航空发动机   故障诊断   广义似然比(GLR)   故障幅值估计   信息重构  
描述: 航空发动机传感器与执行机构信息重构算法
基于深度学习的航空发动机故障融合诊断
作者: 车畅畅   王华伟   倪晓梅   洪骥宇   来源: 北京航空航天大学学报 年份: 2018 文献类型 : 期刊 关键词: 航空发动机   故障诊断   深度学习   抗干扰能力   决策融合  
描述: 通过对航空发动机故障诊断,能够正确判断各部件工作状态,快速确定维修方案,保证飞行安全。在结合深度信念网络和决策融合理论的基础上,提出了基于深度学习的航空发动机故障融合诊断模型。该模型通过分析发动机
基于融合卷积Transformer的航空发动机故障诊断
作者: 赵洪利   杨佳强   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 自注意力机制   航空发动机   故障诊断   深度神经网络   融合卷积Transformer  
描述: 航空发动机长期处于恶劣的气路环境下工作会面临腐蚀、侵蚀等问题,且故障参数特征不明显,因此精准的航空发动机故障诊断方法对保证飞机安全运行具有重要意义。为提高预测准确性,提出了一种基于融合卷积
< 1
Rss订阅