按文献类别分组
关键词
LSSVM与HMM在航空发动机状态预测中的应用研究
作者: 崔建国   高波   蒋丽英   于明月   郑蔚   来源: 计算机工程 年份: 2018 文献类型 : 期刊 关键词: 隐马尔科夫模型   状态预测   航空发动机   最小二乘支持向量机   小波包分解   振动信号   降噪  
描述: 传统单一的状态预测方法难以精确预测航空发动机状态的缺陷,而最小二乘支持向量机(LSSVM)具有较强的非线性预测能力和泛化能力,可以有效地对信号进行非线性预测,隐马尔科夫模型(HMM)有利于处理连续的动态信号,能够精确计算出似然度概率。提出一种结合LSSVM与HMM的状态预测方法。利用提升小波函数全阈值降噪法对采集的振动信号进行降噪,采用小波包分解提取有效的特征,选择不同状态下的特征量训练多个HM M模型,并通过此模型对未知信号特征量以及LSSVM预测的特征量进行状态监测,从而预测出发动机未来时刻的状态以及状态的退化趋势。实验结果表明,该方法的预测准确率达到92%以上,能够有效地预测航空发动机的状态情况。
航空影像分割的支持向量机方法
作者: 徐芳   来源: 武汉大学 年份: 2016 文献类型 : 学位论文 关键词: 支持向量机   遗传算法   C均值   模糊   惩罚因子(常数)C   最小二乘支持向量机   航空影像分割   核函数   神经网络   样本预选取   航空影像纹理分类  
描述: 分类与分割的优劣比较。 (1) 提出将支持向量机用于航空影像的纹理分类与影像分割中,在对多种线性不可分的特征进行分类时,用SVM方法得到了较好的分割与分类结果。 研究了支持向量机参数(核函数
< 1 2
Rss订阅