首页>
根据【关键词:飞参数据,深度学习,故障检测,深度置信网络,航空发动机传感器】搜索到相关结果 2 条
-
基于SSA-SVM的航空电弧故障检测
-
作者:
戴洪德
张志亮
崔伟成
王艺卉
陈美男
来源:
科学技术与工程
年份:
2024
文献类型 :
期刊
关键词:
小波分析
支持向量机
麻雀搜索算法
故障检测
电弧
-
描述:
machine, SSA-SVM)的航空电弧故障检测方法。首先采用小波分解对电弧故障电流数据进行分解,小波分解能有效克服经验模态分解时存在的模态混叠问题。再从信号无序度的角度对电流分量提取能量熵、模糊熵
-
基于概率稀疏自注意力的航空发动机剩余寿命预测
-
作者:
王欣
黄佳琪
许雅玺
来源:
科学技术与工程
年份:
2024
文献类型 :
期刊
关键词:
航空发动机
Transformer
深度学习
概率稀疏自注意力
剩余寿命预测
-
描述:
航空发动机剩余寿命预测对其健康管理具有重要意义,针对长序列、多维度的航空发动机监测参数,提出一种基于概率稀疏自注意力(ProbSparse Self-Attention)的Transformer模型以实现航空发动机剩余寿命的准确预测。用ProbSparse Self-Attention取代原始Transformer中的常规自注意力机制,使得模型更关注时间序列中重要的时间节点,大幅缩减时间维度,减小了时间和空间复杂度;通过注意力层整合后的信息,进一步通过前馈神经网络层和卷积层,提取传感器的空间特征,编码层之间通过扩张因果卷积相连接,扩大了感受野,提高了模型对长序列信息的捕获能力。在新公开的N-CMAPSS数据集上验证算法,实验结果表明,相比于实验中的对比模型,所提模型的RMSE和Score值均有提升,推理速度也优于其他模型。