首页>
根据【关键词:遥感影像,数据增强,RCNN,深度学习,Faster,飞机目标检测】搜索到相关结果 546 条
-
基于多分辨率遥感影像的飞机检测研究
-
作者:
侯宇青阳
全吉成
魏湧明
来源:
激光与光电子学进展
年份:
2018
文献类型 :
期刊
关键词:
显著性提取
遥感影像
目标检测
深度学习
-
描述:
从多分辨遥感图像特点、深度学习网络结构和飞机目标尺寸三个方面进行研究,明确了检测结果与图像中飞机目标像素数的定量关系,对影响图像中目标像素数的两个因素飞机实际尺寸和图像分辨率关系进行定量分析。在检测
-
遥感影像飞机目标检测和细粒度识别方法研究
-
作者:
毛嘉兴
来源:
华中科技大学
年份:
2020
文献类型 :
学位论文
关键词:
遥感影像
细粒度识别
深度学习
飞机检测
-
描述:
遥感影像飞机目标检测和细粒度识别方法研究
-
遥感影像飞机目标检测和细粒度识别方法研究
-
作者:
毛嘉兴
来源:
华中科技大学
年份:
2020
文献类型 :
学位论文
关键词:
遥感影像
细粒度识别
深度学习
飞机检测
-
描述:
遥感影像飞机目标检测和细粒度识别方法研究
-
联合多尺度特征和注意力机制的遥感影像飞机目标检测
-
作者:
徐佰祺
江刚武
刘建辉
王鑫
魏祥坡
余培东
来源:
测绘科学技术学报
年份:
2021
文献类型 :
期刊
关键词:
YOLO
注意力机制
特征融合
遥感影像
V4算法
飞机目标检测
-
描述:
针对遥感影像飞机目标尺寸小、特征不明显的问题,在YOLO V4的基础上,提出一种联合多尺度特征和注意力机制的遥感影像飞机目标检测方法。该方法扩大了特征融合时尺度的范围,增强了对低层特征和小目标信息
-
联合多尺度特征和注意力机制的遥感影像飞机目标检测
-
作者:
徐佰祺
江刚武
刘建辉
王鑫
魏祥坡
余培东
来源:
测绘科学技术学报
年份:
2021
文献类型 :
期刊
关键词:
YOLO
注意力机制
特征融合
遥感影像
V4算法
飞机目标检测
-
描述:
针对遥感影像飞机目标尺寸小、特征不明显的问题,在YOLO V4的基础上,提出一种联合多尺度特征和注意力机制的遥感影像飞机目标检测方法。该方法扩大了特征融合时尺度的范围,增强了对低层特征和小目标信息
-
基于深度学习的高分辨率遥感影像飞机掩体检测方法
-
作者:
史姝姝
陈永强
王樱洁
王春乐
来源:
激光与光电子学进展
年份:
2024
文献类型 :
期刊
关键词:
遥感影像
目标检测
深度学习
旋转框
遥感
-
描述:
高分辨率遥感影像数据集。对比Faster R-CNN、SSD、RetinaNet、YOLOv3和YOLOX等5个深度学习目标检测模型的综合性能,结果表明,在飞机掩体影像数据集上YOLOX模型表现更佳
-
光学遥感图像中的飞机目标检测技术研究综述
-
作者:
祝文韬
谢宝蓉
王琰
沈霁
朱浩文
来源:
计算机科学
年份:
2021
文献类型 :
期刊
关键词:
机器学习
光学遥感图像
深度学习
飞机目标检测
模板匹配
-
描述:
飞机目标检测方法总结为3类,对这3类检测方法的概念和研究情况分别进行了阐述,并在此基础上进行了比较分析,重点研究了深度学习方法在该领域的研究情况并讨论了样本和数据集问题,最后讨论了飞机目标检测的关键技术难点,并对该领域的未来发展趋势做了展望。
-
光学遥感图像中的飞机目标检测技术研究综述
-
作者:
祝文韬
谢宝蓉
王琰
沈霁
朱浩文
来源:
计算机科学
年份:
2021
文献类型 :
期刊
关键词:
机器学习
光学遥感图像
深度学习
飞机目标检测
模板匹配
-
描述:
飞机目标检测方法总结为3类,对这3类检测方法的概念和研究情况分别进行了阐述,并在此基础上进行了比较分析,重点研究了深度学习方法在该领域的研究情况并讨论了样本和数据集问题,最后讨论了飞机目标检测的关键技术难点,并对该领域的未来发展趋势做了展望。
-
遥感图像飞机目标高效搜检深度学习优化算法
-
作者:
郭琳
秦世引
来源:
北京航空航天大学学报
年份:
2019
文献类型 :
期刊
关键词:
停机坪与跑道分割
深度神经网络
深度学习
飞机目标检测
大幅面遥感图像
-
描述:
为了实现大幅面遥感图像中飞机目标的高效检测与准确定位,通过深度神经网络(DNN)的级联组合,提出了一种新颖的搜寻与检测相集成的飞机目标高效检测算法。首先,运用高性能的端到端DNN网络,进行停机坪与跑道区域的像素级高效精准分割,从而大幅度缩小飞机目标的搜索范围,以降低虚警发生概率,完成飞机目标候选检测区域的快速搜寻。然后,针对分割所得停机坪与跑道区域,借助手工数据集对YOLO网络模型进行迁移式强化训练,一方面可以弥补训练集在样本类型与数据规模上的不足,另一方面借助YOLO网络的强时效性优势对飞机目标的位置进行回归求解,可以显著提高飞机目标的检测效率。停机坪与跑道区域分割DNN网络在分割精度与时效性上具有显著优势,而迁移式强化训练YOLO网络不仅具有很高的检测效率,在检测精度上也能保持良好的性能。通过一系列综合实验与对比分析,验证了提出的搜寻与检测相集成的DNN级联组合式飞机目标高效检测算法的性能优势。
-
基于深度迁移学习的复杂机场场景飞机目标检测方法
-
作者:
钟聃
李铁虎
李诚
来源:
光子学报
年份:
2024
文献类型 :
期刊
关键词:
深度学习
机场场面
迁移学习
特征金字塔网络
飞机目标检测
-
描述:
提出了一种改进的深度学习模型,旨在解决检测问题。首先基于迁移学习,微调预训练模型,提高了模型在有限的飞机数据集中的特征提取能力。其次,融入调整模块以增加深层特征图的感受野,提升模型的鲁棒性。引入