关键词
基于深度学习的光学遥感图像飞机检测算法
作者: 董永峰   仉长涛   汪鹏   冯哲   来源: 激光与光电子学进展 年份: 2021 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   图像处理   目标检测   深度学习   Mask   RCNN算法  
描述: 光学遥感图像目标检测一直都是遥感领域研究的热点之一,但现有的检测方法对背景复杂且尺寸较小的目标检测准确率不高。针对以上问题,提出了一种以Mask-RCNN为基础框架的目标检测方法。该算法以ResNet50为特征提取网络并在此基础之上利用特征重用技术来更好地提取目标的语义特征,且针对不同类型的飞机尺寸比例不固定等特点,设计了一组更加合适的候选框尺度集合。实验结果证明,该方法与以往常用的检测算法相比在小物体检测上拥有更高的检测精度。
基于深度学习的光学遥感图像飞机检测算法
作者: 董永峰   仉长涛   汪鹏   冯哲   来源: 激光与光电子学进展 年份: 2020 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   图像处理   目标检测   深度学习   Mask   RCNN算法  
描述: 基于深度学习的光学遥感图像飞机检测算法
基于半监督学习的遥感飞机图像检测方法
作者: 杜泽星   殷进勇   杨建   来源: 激光与光电子学进展 年份: 2020 文献类型 : 期刊 关键词: 遥感图像   图像处理   目标检测   半监督学习   生成式对抗网络  
描述: 基于半监督学习的遥感飞机图像检测方法
基于半监督学习的遥感飞机图像检测方法
作者: 杜泽星   殷进勇   杨建   来源: 激光与光电子学进展 年份: 2019 文献类型 : 期刊 关键词: 遥感图像   目标检测   半监督学习   生成式对抗网络  
描述: 针对现有的基于深度学习的遥感飞机图像检测方法,在训练时需要大量的带标记数据集和较长的训练时间,本文提出了一种基于生成式对抗网络的半监督学习方法。采用两种粒度的深度卷积生成式对抗网络,分别提取了待检测目标的边缘特征信息和深层语义特征。通过结合两种粒度的生成式对抗网络的判别器网络模型,设计了目标检测网络模型。实验结果表明,本文所设计的这种半监督学习训练方法有着更快的收敛速度,并且在训练时需要的标记样本更少。
基于多分辨率遥感影像的飞机检测研究
作者: 侯宇青阳   全吉成   魏湧明   来源: 激光与光电子学进展 年份: 2018 文献类型 : 期刊 关键词: 显著性提取   遥感影像   目标检测   深度学习  
描述: 从多分辨遥感图像特点、深度学习网络结构和飞机目标尺寸三个方面进行研究,明确了检测结果与图像中飞机目标像素数的定量关系,对影响图像中目标像素数的两个因素飞机实际尺寸和图像分辨率关系进行定量分析。在检测结论基础上设计了基于显著性检测算法的遥感图像前期处理算法,算法基于生成的显著性图像生成图像掩膜提取潜在目标区域图像块,进行多尺度放大,增加图像中目标的像素数,提升目标检测率。前期处理算法自适应的进行图像目标区域提取,解决了不同分辨率的大尺寸遥感影像中飞机检测率低的问题,通过与原始检测算法和其他图像处理方法对比验证了本文设计算法的有效性,在检测准确率和检测速度上均得到明显提升。
航空轮胎有限元分析
作者: 刘坤   苏彤   王典   来源: 激光与光电子学进展 年份: 2018 文献类型 : 期刊 关键词: 卷积神经网络   深度学习   模糊不变   目标识别  
描述: 由于采集、运动以及聚焦等导致的目标模糊是目标识别率偏低的一个主要问题,因此本文提出一种基于模糊不变卷积神经网络模型BICNN(Blur-Invariant Convolutional Neural Network)的目标识别方法。与仅优化多项式逻辑回归目标的传统CNN(Convolutional Neural Network)模型的训练不同,BICNN引入和学习一个新的模糊不变层改善模糊目标的识别率,提高目标识别的鲁棒性。首先,BICNN通过增加模糊不变约束项及正则化来优化本文提出的模糊不变目标函数进行训练;其次,通过减小模糊不变目标函数值来规定训练样本在模糊之前和之后的特征映射相一致,最终实现模糊不变性。测试结果表明验证,BICNN改善了因模糊造成识别率降低的问题,进而提升运动模糊图像的识别率。
航空影像辅助的机载LiDAR植被点云分类
作者: 王果   王强   张振鑫   徐棒   赵光兴   来源: 激光与光电子学进展 年份: 2021 文献类型 : 期刊 关键词: 植被点云分类   图像处理   机载激光雷达   融合   航空影像  
描述: 针对从非地面点云数据中难以自动分类植被和建筑物的问题,提出一种航空影像辅助的机载LiDAR(Light Detection and Ranging)植被点云分类方法。根据植被的光谱特征明显不同于其他地物这一特点,在生成数字正射影像的基础上,首先利用K均值(K-means)聚类算法对影像进行聚类和图像增强,然后将增强后的影像和对应区域的点云数据进行融合,最后通过影像处理结果对机载LiDAR植被点云进行分类。选取某城市的机载LiDAR植被点云数据和航空影像进行实验,定量分析结果显示所提方法的总分类精度为96.47%,Kappa系数为0.9248,该方法能够达到点云中植被自动分类的目的。
飞机目标分类的深度卷积神经网络设计优化
作者: 马俊成   赵红东   杨东旭   康晴   来源: 激光与光电子学进展 年份: 2020 文献类型 : 期刊 关键词: 图像分类   深度卷积神经网络   图像处理   高分类精度   飞机目标   归一化混淆矩阵  
描述: 飞机目标分类的深度卷积神经网络设计优化
< 1
Rss订阅