关键词
基于机器学习的航空器进近飞行时间预测
作者: 叶博嘉   鲍序   刘博   田勇   来源: 航空学报 年份: 2021 文献类型 : 期刊 关键词: 空中交通管理   机器学习   特征重要度   随机森林   进近飞行时间预测  
描述: 为了准确预测航空器的落地时间,提高空管部门间的协作效率,采用机器学习的方法对航空器进近阶段飞行时间进行了预测。从实际运行出发,分析航空器在进近管制空域飞行时间产生差异的原因,提出了影响航空器在进近空域飞行的8类因素和17个重要特征。以航空器在进近飞行时间为标签,基于提出的重要特征,采用岭回归、支持向量机、随机森林和神经网络算法,建立了4种基于机器学习的航空器进近飞行时间预测模型。以南京进近为实例,对4种机器学习模型进行训练、验证和测试,对模型的性能指标、特征重要性和影响因素展开分析。研究结果表明,对于航空器进近飞行时间的预测,基于随机森林的模型表现出了最高的预测性能,模型的泛化能力最好、精确度高,回归效果越显著;进场状态是影响航空器进近飞行时间的最重要因素,而进场点和进场高度特征则对结果的贡献度最大。
基于机器学习的航空器进近飞行时间预测
作者: 叶博嘉   鲍序   刘博   田勇   来源: 航空学报 年份: 2021 文献类型 : 期刊 关键词: 空中交通管理   机器学习   特征重要度   随机森林   进近飞行时间预测  
描述: 为了准确预测航空器的落地时间,提高空管部门间的协作效率,采用机器学习的方法对航空器进近阶段飞行时间进行了预测。从实际运行出发,分析航空器在进近管制空域飞行时间产生差异的原因,提出了影响航空器在进近空域飞行的8类因素和17个重要特征。以航空器在进近飞行时间为标签,基于提出的重要特征,采用岭回归、支持向量机、随机森林和神经网络算法,建立了4种基于机器学习的航空器进近飞行时间预测模型。以南京进近为实例,对4种机器学习模型进行训练、验证和测试,对模型的性能指标、特征重要性和影响因素展开分析。研究结果表明,对于航空器进近飞行时间的预测,基于随机森林的模型表现出了最高的预测性能,模型的泛化能力最好、精确度高,回归效果越显著;进场状态是影响航空器进近飞行时间的最重要因素,而进场点和进场高度特征则对结果的贡献度最大。
数据驱动的进场航空器飞行时间预测
作者: 归旭豪   来源: 南京航空航天大学 年份: 2021 文献类型 : 学位论文 关键词: 卷积神经网络   空中交通管理   随机森林   航迹聚类   飞行时间预测  
描述: 数据驱动的进场航空器飞行时间预测
基于离场运行优化的航空器推出时间预测研究
作者: 刘思涵   来源: 南京航空航天大学 年份: 2021 文献类型 : 学位论文 关键词: 场面运行优化   冲突类型   空中交通管理   多目标优化   推出时间  
描述: 基于离场运行优化的航空器推出时间预测研究
< 1 2
Rss订阅