首页>
根据【关键词:航空发动机,深度神经网络,深度置信网络,无失效数据,可靠性监测,多层贝叶斯方法】搜索到相关结果 2 条
-
基于深度学习的航空传感器故障诊断方法
-
作者:
郑晓飞
郭创
姚斌
冯华鑫
来源:
计算机工程
年份:
2018
文献类型 :
期刊
关键词:
信号重构
故障诊断
深度学习
航空传感器
深度置信网络
故障隔离
-
描述:
为解决传统神经网络进行传感器故障诊断时存在的过拟合、泛化能力有限等问题,提出一种基于深度置信网络观测器的航空传感器故障诊断方法。利用深度置信网络替代浅层神经网络,在优化网络结构的基础上,给出深度置信网络隐层节点数选取的递推公式,构建深度置信网络状态观测器。离线训练时,利用飞行数据训练深度置信网络观测器。在线诊断时,通过比较观测器输出值与实际输出值判断故障类型,并给出3种故障隔离与信号重构方法。仿真结果表明,与BP神经网络观测器相比,该方法能够快速准确地进行故障诊断与隔离,并且完成信号重构。
-
LSSVM与HMM在航空发动机状态预测中的应用研究
-
作者:
崔建国
高波
蒋丽英
于明月
郑蔚
来源:
计算机工程
年份:
2018
文献类型 :
期刊
关键词:
隐马尔科夫模型
状态预测
航空发动机
最小二乘支持向量机
小波包分解
振动信号
降噪
-
描述:
传统单一的状态预测方法难以精确预测航空发动机状态的缺陷,而最小二乘支持向量机(LSSVM)具有较强的非线性预测能力和泛化能力,可以有效地对信号进行非线性预测,隐马尔科夫模型(HMM)有利于处理连续